These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
302 related articles for article (PubMed ID: 16241618)
21. Intermittent route to generalized synchronization in bidirectionally coupled chaotic oscillators. Koronovskii AA; Moskalenko OI; Pivovarov AA; Evstifeev EV Chaos; 2020 Aug; 30(8):083133. PubMed ID: 32872830 [TBL] [Abstract][Full Text] [Related]
22. The Ginzburg-Landau approach to oscillatory media. Kramer L; Hynne F; Graae Sorenson P; Walgraef D Chaos; 1994 Sep; 4(3):443-452. PubMed ID: 12780119 [TBL] [Abstract][Full Text] [Related]
23. Quantitative and qualitative characterization of zigzag spatiotemporal chaos in a system of amplitude equations for nematic electroconvection. Oprea I; Triandaf I; Dangelmayr G; Schwartz IB Chaos; 2007 Jun; 17(2):023101. PubMed ID: 17614655 [TBL] [Abstract][Full Text] [Related]
24. Front explosions in three-dimensional resonantly-forced oscillatory systems. Hemming CJ; Kapral R Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Aug; 68(2 Pt 2):026203. PubMed ID: 14525080 [TBL] [Abstract][Full Text] [Related]
25. Description of mesoscale pattern formation in shallow convective cloud fields by using time-dependent Ginzburg-Landau and Swift-Hohenberg stochastic equations. Monroy DL; Naumis GG Phys Rev E; 2021 Mar; 103(3-1):032312. PubMed ID: 33862782 [TBL] [Abstract][Full Text] [Related]
26. Universal critical behavior of noisy coupled oscillators: a renormalization group study. Risler T; Prost J; Jülicher F Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Jul; 72(1 Pt 2):016130. PubMed ID: 16090059 [TBL] [Abstract][Full Text] [Related]
27. Finite wavelength instabilities in a slow mode coupled complex ginzburg-landau equation. Ipsen M; Sorensen PG Phys Rev Lett; 2000 Mar; 84(11):2389-92. PubMed ID: 11018892 [TBL] [Abstract][Full Text] [Related]
28. Ordered and self-disordered dynamics of holes and defects in the one-dimensional complex Ginzburg-Landau equation. van Hecke M; Howard M Phys Rev Lett; 2001 Mar; 86(10):2018-21. PubMed ID: 11289844 [TBL] [Abstract][Full Text] [Related]
29. Universal critical behavior of the synchronization transition in delayed chaotic systems. Szendro IG; López JM Phys Rev E Stat Nonlin Soft Matter Phys; 2005 May; 71(5 Pt 2):055203. PubMed ID: 16089589 [TBL] [Abstract][Full Text] [Related]
30. Generation of pulse trains in nonlinear optical fibers through the generalized complex Ginzburg-Landau equation. Latchio Tiofack CG; Mohamadou A; Kofané TC; Moubissi AB Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Dec; 80(6 Pt 2):066604. PubMed ID: 20365291 [TBL] [Abstract][Full Text] [Related]
31. Controlling and synchronizing space time chaos. Boccaletti S; Bragard J; Arecchi FT Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 1999 Jun; 59(6):6574-8. PubMed ID: 11969644 [TBL] [Abstract][Full Text] [Related]
32. Integral behavior for localized synchronization in nonidentical extended systems. Bragard J; Boccaletti S Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Nov; 62(5 Pt A):6346-51. PubMed ID: 11101968 [TBL] [Abstract][Full Text] [Related]
33. Phase synchronization between two essentially different chaotic systems. Guan S; Lai CH; Wei GW Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Jul; 72(1 Pt 2):016205. PubMed ID: 16090064 [TBL] [Abstract][Full Text] [Related]
34. Control of rare intense events in spatiotemporally chaotic systems. Nagy V; Ott E Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Dec; 76(6 Pt 2):066206. PubMed ID: 18233903 [TBL] [Abstract][Full Text] [Related]
35. Synchronization of non-phase-coherent chaotic electrochemical oscillations. Kiss IZ; Lv Q; Hudson JL Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Mar; 71(3 Pt 2A):035201. PubMed ID: 15903480 [TBL] [Abstract][Full Text] [Related]
36. Time-delay autosynchronization control of defect turbulence in the cubic-quintic complex Ginzburg-Landau equation. Gonpe Tafo JB; Nana L; Kofane TC Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Sep; 88(3):032911. PubMed ID: 24125329 [TBL] [Abstract][Full Text] [Related]
37. An analytic criterion for generalized synchronization in unidirectionally coupled systems based on the auxiliary system approach. Wong WK; Zhen B; Xu J; Wang Z Chaos; 2012 Sep; 22(3):033146. PubMed ID: 23020485 [TBL] [Abstract][Full Text] [Related]
38. Pattern formation capacity of spatially extended systems. Vakulenko S; Kazmierczak B; Génieys S Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Jan; 69(1 Pt 2):016215. PubMed ID: 14995701 [TBL] [Abstract][Full Text] [Related]
39. Generalized synchronization in time-delayed systems. Shahverdiev EM; Shore KA Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Jan; 71(1 Pt 2):016201. PubMed ID: 15697692 [TBL] [Abstract][Full Text] [Related]
40. Measurement of coefficients of the Ginzburg-Landau equation for patterns of Taylor spirals. Goharzadeh A; Mutabazi I Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jul; 82(1 Pt 2):016306. PubMed ID: 20866724 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]