These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 16241652)

  • 1. Ultraslow light propagation in an inhomogeneously broadened rare-earth ion-doped crystal.
    Baldit E; Bencheikh K; Monnier P; Levenson JA; Rouget V
    Phys Rev Lett; 2005 Sep; 95(14):143601. PubMed ID: 16241652
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Observation of ultraslow light propagation in a ruby crystal at room temperature.
    Bigelow MS; Lepeshkin NN; Boyd RW
    Phys Rev Lett; 2003 Mar; 90(11):113903. PubMed ID: 12688928
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Observations of self-induced ultraslow light in a persistent spectral hole burning medium.
    Hahn J; Ham BS
    Opt Express; 2008 Oct; 16(21):16723-8. PubMed ID: 18852781
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interfacing superconducting qubits and telecom photons via a rare-earth-doped crystal.
    O'Brien C; Lauk N; Blum S; Morigi G; Fleischhauer M
    Phys Rev Lett; 2014 Aug; 113(6):063603. PubMed ID: 25148328
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nanophotonic coherent light-matter interfaces based on rare-earth-doped crystals.
    Zhong T; Kindem JM; Miyazono E; Faraon A
    Nat Commun; 2015 Sep; 6():8206. PubMed ID: 26364586
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Coherent optical ultrasound detection with rare-earth ion dopants.
    Tay JW; Ledingham PM; Longdell JJ
    Appl Opt; 2010 Aug; 49(23):4331-4. PubMed ID: 20697433
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cavity-enhanced spectroscopy of a rare-earth-ion-doped crystal: observation of a power law for inhomogeneous broadening.
    Goto H; Nakamura S; Kujiraoka M; Ichimura K
    Opt Express; 2013 Oct; 21(20):24332-43. PubMed ID: 24104343
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Observation of ultraslow and stored light pulses in a solid.
    Turukhin AV; Sudarshanam VS; Shahriar MS; Musser JA; Ham BS; Hemmer PR
    Phys Rev Lett; 2002 Jan; 88(2):023602. PubMed ID: 11801011
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Storage and retrieval of collective excitations on a long-lived spin transition in a rare-earth ion-doped crystal.
    Goldschmidt EA; Beavan SE; Polyakov SV; Migdall AL; Sellars MJ
    Opt Express; 2013 Apr; 21(8):10087-94. PubMed ID: 23609713
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spectral engineering of slow light, cavity line narrowing, and pulse compression.
    Sabooni M; Li Q; Rippe L; Mohan RK; Kröll S
    Phys Rev Lett; 2013 Nov; 111(18):183602. PubMed ID: 24237519
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Slow light propagation in a ring erbium-doped fiber.
    Bencheikh K; Baldit E; Briaudeau S; Monnier P; Levenson JA; Mélin G
    Opt Express; 2010 Dec; 18(25):25642-8. PubMed ID: 21164910
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Narrow Optical Line Widths in Erbium Implanted in TiO
    Phenicie CM; Stevenson P; Welinski S; Rose BC; Asfaw AT; Cava RJ; Lyon SA; de Leon NP; Thompson JD
    Nano Lett; 2019 Dec; 19(12):8928-8933. PubMed ID: 31765161
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phase-coupling-induced ultraslow light propagation in solids at room temperature.
    Zhang G; Bo F; Dong R; Xu J
    Phys Rev Lett; 2004 Sep; 93(13):133903. PubMed ID: 15524721
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Group velocity manipulation in active fibers using mutually modulated cross-gain modulation: from ultraslow to superluminal propagation.
    Qian K; Zhan L; Zhang L; Zhu ZQ; Peng JS; Gu ZC; Hu X; Luo SY; Xia YX
    Opt Lett; 2011 Jun; 36(12):2185-7. PubMed ID: 21685961
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optical Line Width Broadening Mechanisms at the 10 kHz Level in Eu
    Bartholomew JG; de Oliveira Lima K; Ferrier A; Goldner P
    Nano Lett; 2017 Feb; 17(2):778-787. PubMed ID: 28099025
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dispersive heterodyne probing method for laser frequency stabilization based on spectral hole burning in rare-earth doped crystals.
    Gobron O; Jung K; Galland N; Predehl K; Le Targat R; Ferrier A; Goldner P; Seidelin S; Le Coq Y
    Opt Express; 2017 Jun; 25(13):15539-15548. PubMed ID: 28788976
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Superluminal and slow light propagation in a room-temperature solid.
    Bigelow MS; Lepeshkin NN; Boyd RW
    Science; 2003 Jul; 301(5630):200-2. PubMed ID: 12855803
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Slow light based on coherent hole-burning in a Doppler broadened three-level Lambda-type atomic system.
    Kuang SQ; Du P; Wang RG; Jiang Y; Gao JY
    Opt Express; 2008 Jul; 16(15):11604-10. PubMed ID: 18648481
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development and characterization of high suppression and high étendue narrowband spectral filters.
    Kinos A; Li Q; Rippe L; Kröll S
    Appl Opt; 2016 Dec; 55(36):10442-10448. PubMed ID: 28059275
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modulation-frequency-controlled change from sub- to superluminal regime in highly doped erbium fibers.
    Melle S; Calderón OG; Caro CE; Cabrera-Granado E; Antón MA; Carreño F
    Opt Lett; 2008 Apr; 33(8):827-9. PubMed ID: 18414546
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.