These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

243 related articles for article (PubMed ID: 16241804)

  • 1. Origin of non-Gaussian statistics in hydrodynamic turbulence.
    Li Y; Meneveau C
    Phys Rev Lett; 2005 Oct; 95(16):164502. PubMed ID: 16241804
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Origin of lagrangian intermittency in drift-wave turbulence.
    Kadoch B; Bos WJ; Schneider K
    Phys Rev Lett; 2010 Oct; 105(14):145001. PubMed ID: 21230837
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Self-attenuation of extreme events in Navier-Stokes turbulence.
    Buaria D; Pumir A; Bodenschatz E
    Nat Commun; 2020 Nov; 11(1):5852. PubMed ID: 33203875
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lagrangian statistics and flow topology in forced two-dimensional turbulence.
    Kadoch B; Del-Castillo-Negrete D; Bos WJ; Schneider K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Mar; 83(3 Pt 2):036314. PubMed ID: 21517594
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Statistics of Fourier modes of velocity and vorticity in turbulent flows: intermittency and long-range correlations.
    Chevillard L; Mazellier N; Poulain C; Gagne Y; Baudet C
    Phys Rev Lett; 2005 Nov; 95(20):200203. PubMed ID: 16384036
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanisms of particle clustering in Gaussian and non-Gaussian synthetic turbulence.
    Nilsen C; Andersson HI
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Oct; 90(4):043005. PubMed ID: 25375592
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Measuring intense rotation and dissipation in turbulent flows.
    Zeff BW; Lanterman DD; McAllister R; Roy R; Kostelich EJ; Lathrop DP
    Nature; 2003 Jan; 421(6919):146-9. PubMed ID: 12520296
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dynamical origins for non-Gaussian vorticity distributions in turbulent flows.
    Wilczek M; Friedrich R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Jul; 80(1 Pt 2):016316. PubMed ID: 19658815
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Vortex dynamics and Lagrangian statistics in a model for active turbulence.
    James M; Wilczek M
    Eur Phys J E Soft Matter; 2018 Feb; 41(2):21. PubMed ID: 29435676
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Route to non-Gaussian statistics in convective turbulence.
    Festa R; Mazzino A; Tizzi M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Mar; 75(3 Pt 2):035301. PubMed ID: 17500751
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Conditional Lagrangian acceleration statistics in turbulent flows with Gaussian-distributed velocities.
    Aringazin AK
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Sep; 70(3 Pt 2):036301. PubMed ID: 15524627
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of intermittency in zooplankton behaviour in turbulence.
    Michalec FG; Schmitt FG; Souissi S; Holzner M
    Eur Phys J E Soft Matter; 2015 Oct; 38(10):108. PubMed ID: 26490249
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Intermittency in two-dimensional Ekman-Navier-Stokes turbulence.
    Boffetta G; Celani A; Musacchio S; Vergassola M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Aug; 66(2 Pt 2):026304. PubMed ID: 12241282
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dynamical equations for high-order structure functions, and a comparison of a mean-field theory with experiments in three-dimensional turbulence.
    Kurien S; Sreenivasan KR
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Nov; 64(5 Pt 2):056302. PubMed ID: 11736089
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Single-point velocity statistics of forced and decaying two-dimensional turbulence.
    Jun Y; Wu XL; Zhang J
    Phys Rev Lett; 2006 Apr; 96(16):164502. PubMed ID: 16712238
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Numerical study of comparison of vorticity and passive vectors in turbulence and inviscid flows.
    Ohkitani K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Apr; 65(4 Pt 2B):046304. PubMed ID: 12006010
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Generation of intense dissipation in high Reynolds number turbulence.
    Buaria D; Pumir A; Bodenschatz E
    Philos Trans A Math Phys Eng Sci; 2022 Mar; 380(2218):20210088. PubMed ID: 35034489
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Point-vortex model for Lagrangian intermittency in turbulence.
    Rast MP; Pinton JF
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Apr; 79(4 Pt 2):046314. PubMed ID: 19518340
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Exact relation between Eulerian and Lagrangian velocity increment statistics.
    Kamps O; Friedrich R; Grauer R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Jun; 79(6 Pt 2):066301. PubMed ID: 19658588
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lagrangian particle statistics in turbulent flows from a simple vortex model.
    Wilczek M; Jenko F; Friedrich R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 May; 77(5 Pt 2):056301. PubMed ID: 18643155
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.