These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 1624185)

  • 21. The mechanical characteristics of the human heel pad during foot strike in running: an in vivo cineradiographic study.
    De Clercq D; Aerts P; Kunnen M
    J Biomech; 1994 Oct; 27(10):1213-22. PubMed ID: 7962009
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A Step in the Right Direction: A Prospective Randomized, Controlled Crossover Trial of Autologous Fat Grafting for Rejuvenation of the Heel.
    James IB; Gusenoff BR; Wang S; DiBernardo G; Minteer D; Gusenoff JA
    Aesthet Surg J; 2021 Jun; 41(7):NP959-NP972. PubMed ID: 33615336
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Force-deformation properties of the human heel pad during barefoot walking.
    Wearing SC; Hooper SL; Dubois P; Smeathers JE; Dietze A
    Med Sci Sports Exerc; 2014 Aug; 46(8):1588-94. PubMed ID: 24504425
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The effect of heel-pad thickness and loading protocol on measured heel-pad stiffness and a standardized protocol for inter-subject comparability.
    Spears IR; Miller-Young JE
    Clin Biomech (Bristol, Avon); 2006 Feb; 21(2):204-12. PubMed ID: 16289518
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Fatty acid composition of normal and atrophied heel fat pad.
    Buschmann WR; Hudgins LC; Kummer F; Desai P; Jahss MH
    Foot Ankle; 1993 Sep; 14(7):389-94. PubMed ID: 8406258
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The potential influence of the heel counter on internal stress during static standing: a combined finite element and positional MRI investigation.
    Spears IR; Miller-Young JE; Sharma J; Ker RF; Smith FW
    J Biomech; 2007; 40(12):2774-80. PubMed ID: 17362970
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Relationship Between Decreased Subcalcaneal Fat Pad Thickness and Plantar Heel Pain. A Case Control Study.
    Lopez-Lopez D; Becerro-de-Bengoa-Vallejo R; Losa-Iglesias ME; Soriano-Medrano A; Palomo-Lopez P; Morales-Ponce A; Rodriguez-Sanz D; Calvo-Lobo C
    Pain Physician; 2019 Jan; 22(1):109-116. PubMed ID: 30700074
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Constitutive formulation and numerical analysis of the heel pad region.
    Natali AN; Fontanella CG; Carniel EL
    Comput Methods Biomech Biomed Engin; 2012; 15(4):401-9. PubMed ID: 21246425
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Biomechanics of the heel pad for type 2 diabetic patients.
    Hsu TC; Lee YS; Shau YW
    Clin Biomech (Bristol, Avon); 2002 May; 17(4):291-6. PubMed ID: 12034122
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Explicit finite element modelling of heel pad mechanics in running: inclusion of body dynamics and application of physiological impact loads.
    Chen WM; Lee PV
    Comput Methods Biomech Biomed Engin; 2015; 18(14):1582-95. PubMed ID: 24980181
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Comparison of ultrasonography and radiography in assessment of the heel pad compressibility index of patients with plantar heel pain syndrome. Measurement of the fat pad in plantar heel pain syndrome.
    Uzel M; Cetinus E; Bilgic E; Ekerbicer H; Karaoguz A
    Joint Bone Spine; 2006 Mar; 73(2):196-9. PubMed ID: 16513397
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A Simulation of the Viscoelastic Behaviour of Heel Pad During Weight-Bearing Activities of Daily Living.
    Behforootan S; Chatzistergos PE; Chockalingam N; Naemi R
    Ann Biomed Eng; 2017 Dec; 45(12):2750-2761. PubMed ID: 28948405
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Heel fat pad involvement in rheumatoid arthritis and in spondyloarthropathies: an ultrasonographic study.
    Falsetti P; Frediani B; Acciai C; Baldi F; Filippou G; Marcolongo R
    Scand J Rheumatol; 2004; 33(5):327-31. PubMed ID: 15513682
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The HPC-device: a method to quantify the heel pad shock absorbency.
    Jørgensen U; Larsen E; Varmarken JE
    Foot Ankle; 1989 Oct; 10(2):93-8. PubMed ID: 2807112
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Shock absorbency of factors in the shoe/heel interaction--with special focus on role of the heel pad.
    Jørgensen U; Bojsen-Møller F
    Foot Ankle; 1989 Jun; 9(6):294-9. PubMed ID: 2744671
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effect of loading history on material properties of human heel pad: an in-vivo pilot investigation during gait.
    Teng ZL; Yang XG; Geng X; Gu YJ; Huang R; Chen WM; Wang C; Chen L; Zhang C; Helili M; Huang JZ; Wang X; Ma X
    BMC Musculoskelet Disord; 2022 Mar; 23(1):254. PubMed ID: 35292004
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effect of Gender on Mechanical Properties of the Plantar Fascia and Heel Fat Pad.
    Taş S
    Foot Ankle Spec; 2018 Oct; 11(5):403-409. PubMed ID: 29029575
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Investigation on the load-displacement curves of a human healthy heel pad: In vivo compression data compared to numerical results.
    Fontanella CG; Matteoli S; Carniel EL; Wilhjelm JE; Virga A; Corvi A; Natali AN
    Med Eng Phys; 2012 Nov; 34(9):1253-9. PubMed ID: 22265099
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Biomechanical behavior of plantar fat pad in healthy and degenerative foot conditions.
    Fontanella CG; Nalesso F; Carniel EL; Natali AN
    Med Biol Eng Comput; 2016 Apr; 54(4):653-61. PubMed ID: 26272439
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Spatial-dependent mechanical properties of the heel pad by shear wave elastography.
    Lin CY; Chen PY; Shau YW; Tai HC; Wang CL
    J Biomech; 2017 Feb; 53():191-195. PubMed ID: 28087063
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.