BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 16241904)

  • 1. Characterization of retinaldehyde dehydrogenase 3.
    Graham CE; Brocklehurst K; Pickersgill RW; Warren MJ
    Biochem J; 2006 Feb; 394(Pt 1):67-75. PubMed ID: 16241904
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparative enzymatic properties of GapB-encoded erythrose-4-phosphate dehydrogenase of Escherichia coli and phosphorylating glyceraldehyde-3-phosphate dehydrogenase.
    Boschi-Muller S; Azza S; Pollastro D; Corbier C; Branlant G
    J Biol Chem; 1997 Jun; 272(24):15106-12. PubMed ID: 9182530
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kinetic characterization of recombinant mouse retinal dehydrogenase types 3 and 4 for retinal substrates.
    Sima A; Parisotto M; Mader S; Bhat PV
    Biochim Biophys Acta; 2009 Dec; 1790(12):1660-4. PubMed ID: 19766701
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Apo and holo crystal structures of an NADP-dependent aldehyde dehydrogenase from Streptococcus mutans.
    Cobessi D; Tête-Favier F; Marchal S; Azza S; Branlant G; Aubry A
    J Mol Biol; 1999 Jul; 290(1):161-73. PubMed ID: 10388564
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chemical mechanism and substrate binding sites of NADP-dependent aldehyde dehydrogenase from Streptococcus mutans.
    Marchal S; Cobessi D; Rahuel-Clermont S; Tête-Favier F; Aubry A; Branlant G
    Chem Biol Interact; 2001 Jan; 130-132(1-3):15-28. PubMed ID: 11306027
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural and kinetic features of aldehyde dehydrogenase 1A (ALDH1A) subfamily members, cancer stem cell markers active in retinoic acid biosynthesis.
    Pequerul R; Vera J; Giménez-Dejoz J; Crespo I; Coines J; Porté S; Rovira C; Parés X; Farrés J
    Arch Biochem Biophys; 2020 Mar; 681():108256. PubMed ID: 31923393
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural and biochemical investigations of the catalytic mechanism of an NADP-dependent aldehyde dehydrogenase from Streptococcus mutans.
    Cobessi D; Tête-Favier F; Marchal S; Branlant G; Aubry A
    J Mol Biol; 2000 Jun; 300(1):141-52. PubMed ID: 10864505
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Acid-base catalysis in the chemical mechanism of inosine monophosphate dehydrogenase.
    Markham GD; Bock CL; Schalk-Hihi C
    Biochemistry; 1999 Apr; 38(14):4433-40. PubMed ID: 10194364
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A disorder to order transition accompanies catalysis in retinaldehyde dehydrogenase type II.
    Bordelon T; Montegudo SK; Pakhomova S; Oldham ML; Newcomer ME
    J Biol Chem; 2004 Oct; 279(41):43085-91. PubMed ID: 15299009
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Trihydroxynaphthalene reductase from Magnaporthe grisea: realization of an active center inhibitor and elucidation of the kinetic mechanism.
    Thompson JE; Basarab GS; Andersson A; Lindqvist Y; Jordan DB
    Biochemistry; 1997 Feb; 36(7):1852-60. PubMed ID: 9048570
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A new NAD
    Wu X; Xu L; Yan M
    Biosci Biotechnol Biochem; 2016 Dec; 80(12):2306-2310. PubMed ID: 27671251
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Kinetics of sheep-liver cytoplasmic aldehyde dehydrogenase.
    MacGibbon AK; Blackwell LF; Buckley PD
    Eur J Biochem; 1977 Jul; 77(1):93-100. PubMed ID: 20307
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrostatic stabilization in a pre-organized polar active site: the catalytic role of Lys-80 in Candida tenuis xylose reductase (AKR2B5) probed by site-directed mutagenesis and functional complementation studies.
    Kratzer R; Nidetzky B
    Biochem J; 2005 Jul; 389(Pt 2):507-15. PubMed ID: 15799715
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Complexes of NADH with betaine aldehyde dehydrogenase from leaves of the plant Amaranthus hypochondriacus L.
    Muñoz-Clares RA; Mújica-Jiménez C
    Chem Biol Interact; 2001 Jan; 130-132(1-3):71-80. PubMed ID: 11306032
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Catalytic mechanism of scytalone dehydratase: site-directed mutagenisis, kinetic isotope effects, and alternate substrates.
    Basarab GS; Steffens JJ; Wawrzak Z; Schwartz RS; Lundqvist T; Jordan DB
    Biochemistry; 1999 May; 38(19):6012-24. PubMed ID: 10320327
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The structure of retinal dehydrogenase type II at 2.7 A resolution: implications for retinal specificity.
    Lamb AL; Newcomer ME
    Biochemistry; 1999 May; 38(19):6003-11. PubMed ID: 10320326
    [TBL] [Abstract][Full Text] [Related]  

  • 17. RALDH3, a retinaldehyde dehydrogenase that generates retinoic acid, is expressed in the ventral retina, otic vesicle and olfactory pit during mouse development.
    Mic FA; Molotkov A; Fan X; Cuenca AE; Duester G
    Mech Dev; 2000 Oct; 97(1-2):227-30. PubMed ID: 11025231
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of 3-deoxyglucosone dehydrogenase as aldehyde dehydrogenase 1A1 (retinaldehyde dehydrogenase 1).
    Collard F; Vertommen D; Fortpied J; Duester G; Van Schaftingen E
    Biochimie; 2007 Mar; 89(3):369-73. PubMed ID: 17175089
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reductive half-reaction of the H172Q mutant of trimethylamine dehydrogenase: evidence against a carbanion mechanism and assignment of kinetically influential ionizations in the enzyme-substrate complex.
    Basran J; Sutcliffe MJ; Hille R; Scrutton NS
    Biochem J; 1999 Jul; 341 ( Pt 2)(Pt 2):307-14. PubMed ID: 10393087
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural Basis of allosteric regulation and substrate specificity of the non-phosphorylating glyceraldehyde 3-Phosphate dehydrogenase from Thermoproteus tenax.
    Lorentzen E; Hensel R; Knura T; Ahmed H; Pohl E
    J Mol Biol; 2004 Aug; 341(3):815-28. PubMed ID: 15288789
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.