BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 16242144)

  • 41. Efficient execution of cell death in non-glycolytic cells requires the generation of ROS controlled by the activity of mitochondrial H+-ATP synthase.
    Santamaría G; Martínez-Diez M; Fabregat I; Cuezva JM
    Carcinogenesis; 2006 May; 27(5):925-35. PubMed ID: 16361271
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Mitochondria consume energy and compromise cellular membrane potential by reversing ATP synthetase activity during focal ischemia in rats.
    Takeda Y; Pérez-Pinzón MA; Ginsberg MD; Sick TJ
    J Cereb Blood Flow Metab; 2004 Sep; 24(9):986-92. PubMed ID: 15356419
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Effects of beauvericin on the metabolic state and ionic homeostasis of ventricular myocytes of the guinea pig.
    Kouri K; Duchen MR; Lemmens-Gruber R
    Chem Res Toxicol; 2005 Nov; 18(11):1661-8. PubMed ID: 16300374
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Glucose and hippocampal neuronal excitability: role of ATP-sensitive potassium channels.
    Huang CW; Huang CC; Cheng JT; Tsai JJ; Wu SN
    J Neurosci Res; 2007 May; 85(7):1468-77. PubMed ID: 17410601
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Hyperthermia-induced cardioprotection is potentiated by ischemic postconditioning in rats.
    Murozono Y; Takahashi N; Shinohara T; Ooie T; Teshima Y; Hara M; Saikawa T; Yoshimatsu H
    Exp Biol Med (Maywood); 2009 May; 234(5):573-81. PubMed ID: 19234055
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Shear fluid-induced Ca2+ release and the role of mitochondria in rat cardiac myocytes.
    Belmonte S; Morad M
    Ann N Y Acad Sci; 2008 Mar; 1123():58-63. PubMed ID: 18375577
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Glucose and glucose transporters regulate lymphatic pump activity through activation of the mitochondrial ATP-sensitive K+ channel.
    Li X; Mizuno R; Ono N; Ohhashi T
    J Physiol Sci; 2008 Aug; 58(4):249-61. PubMed ID: 18597699
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The mitochondrial permeability transition pore and the Ca2+-activated K+ channel contribute to the cardioprotection conferred by tumor necrosis factor-alpha.
    Gao Q; Zhang SZ; Cao CM; Bruce IC; Xia Q
    Cytokine; 2005 Dec; 32(5):199-205. PubMed ID: 16260145
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Mitochondrial Ca2+ uptake during simulated ischemia does not affect permeability transition pore opening upon simulated reperfusion.
    Ruiz-Meana M; Garcia-Dorado D; Miró-Casas E; Abellán A; Soler-Soler J
    Cardiovasc Res; 2006 Sep; 71(4):715-24. PubMed ID: 16860295
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Mitochondrial dysfunction and cytoskeletal disruption during chemical hypoxia to cultured rat hepatic sinusoidal endothelial cells: the pH paradox and cytoprotection by glucose, acidotic pH, and glycine.
    Nishimura Y; Romer LH; Lemasters JJ
    Hepatology; 1998 Apr; 27(4):1039-49. PubMed ID: 9537444
    [TBL] [Abstract][Full Text] [Related]  

  • 51. ATP consumption by uncoupled mitochondria activates sarcolemmal K(ATP) channels in cardiac myocytes.
    Sasaki N; Sato T; Marbán E; O'Rourke B
    Am J Physiol Heart Circ Physiol; 2001 Apr; 280(4):H1882-8. PubMed ID: 11247805
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Metabolic inhibition reduces cardiac L-type Ca2+ channel current due to acidification caused by ATP hydrolysis.
    Kanaporis G; Treinys R; Fischmeister R; Jurevičius J
    PLoS One; 2017; 12(8):e0184246. PubMed ID: 28859158
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Role of sarcolemmal ATP-sensitive potassium channel in oxidative stress-induced apoptosis: mitochondrial connection.
    Marinovic J; Ljubkovic M; Stadnicka A; Bosnjak ZJ; Bienengraeber M
    Am J Physiol Heart Circ Physiol; 2008 Mar; 294(3):H1317-25. PubMed ID: 18192220
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Mitochondrial K+ transport and cardiac protection during ischemia/reperfusion.
    Carreira RS; Facundo HT; Kowaltowski AJ
    Braz J Med Biol Res; 2005 Mar; 38(3):345-52. PubMed ID: 15761613
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Cardioprotective effects of K ATP channel activation during hypoxia in goldfish Carassius auratus.
    Chen J; Zhu JX; Wilson I; Cameron JS
    J Exp Biol; 2005 Jul; 208(Pt 14):2765-72. PubMed ID: 16000545
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Glycolytic oscillations in single ischemic cardiomyocytes at near anoxia.
    Ganitkevich V; Mattea V; Benndorf K
    J Gen Physiol; 2010 Apr; 135(4):307-19. PubMed ID: 20231372
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Octamer-dimer transitions of mitochondrial creatine kinase in heart disease.
    Soboll S; Brdiczka D; Jahnke D; Schmidt A; Schlattner U; Wendt S; Wyss M; Wallimann T
    J Mol Cell Cardiol; 1999 Apr; 31(4):857-66. PubMed ID: 10329213
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Complex I and ATP synthase mediate membrane depolarization and matrix acidification by isoflurane in mitochondria.
    Pravdic D; Hirata N; Barber L; Sedlic F; Bosnjak ZJ; Bienengraeber M
    Eur J Pharmacol; 2012 Sep; 690(1-3):149-57. PubMed ID: 22796646
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Ethanol Dose- and Time-dependently Increases α and β Subunits of Mitochondrial ATP Synthase of Cultured Neonatal Rat Cardiomyocytes.
    Mashimo K; Arthur PG; Ohno Y
    J Nippon Med Sch; 2015; 82(5):237-45. PubMed ID: 26568390
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Sarcolemmal KATP channel modulators and cardiac arrhythmias.
    Baczkó I; Husti Z; Lang V; Leprán I; Light PE
    Curr Med Chem; 2011; 18(24):3640-61. PubMed ID: 21774762
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.