These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
503 related articles for article (PubMed ID: 16242318)
21. Effect of detoxification of dilute-acid corn fiber hydrolysate on xylitol production. Buhner J; Agblevor FA Appl Biochem Biotechnol; 2004 Oct; 119(1):13-30. PubMed ID: 15496725 [TBL] [Abstract][Full Text] [Related]
22. Fermentation performance of Candida guilliermondii for xylitol production on single and mixed substrate media. Mussatto SI; Silva CJ; Roberto IC Appl Microbiol Biotechnol; 2006 Oct; 72(4):681-6. PubMed ID: 16541249 [TBL] [Abstract][Full Text] [Related]
23. Novel isolates for biological detoxification of lignocellulosic hydrolysate. Hou-Rui Z; Xiang-Xiang Q; Silva SS; Sarrouh BF; Ai-Hua C; Yu-Heng Z; Ke J; Qiu X Appl Biochem Biotechnol; 2009 Feb; 152(2):199-212. PubMed ID: 18649037 [TBL] [Abstract][Full Text] [Related]
24. Effect of acetic acid present in bagasse hydrolysate on the activities of xylose reductase and xylitol dehydrogenase in Candida guilliermondii. Lima LH; das Graças de Almeida Felipe M; Vitolo M; Torres FA Appl Microbiol Biotechnol; 2004 Nov; 65(6):734-8. PubMed ID: 15107950 [TBL] [Abstract][Full Text] [Related]
25. A strain of Meyerozyma guilliermondii isolated from sugarcane juice is able to grow and ferment pentoses in synthetic and bagasse hydrolysate media. Martini C; Tauk-Tornisielo SM; Codato CB; Bastos RG; Ceccato-Antonini SR World J Microbiol Biotechnol; 2016 May; 32(5):80. PubMed ID: 27038950 [TBL] [Abstract][Full Text] [Related]
26. Optimization of fed-batch fermentation for xylitol production by Candida tropicalis. Kim JH; Han KC; Koh YH; Ryu YW; Seo JH J Ind Microbiol Biotechnol; 2002 Jul; 29(1):16-9. PubMed ID: 12080422 [TBL] [Abstract][Full Text] [Related]
27. Statistical optimization of xylitol production from corncob hemicellulose hydrolysate by Candida tropicalis HDY-02. Ling H; Cheng K; Ge J; Ping W N Biotechnol; 2011 Oct; 28(6):673-8. PubMed ID: 20466087 [TBL] [Abstract][Full Text] [Related]
28. Cellulases and hemicellulases from endophytic Acremonium species and its application on sugarcane bagasse hydrolysis. de Almeida MN; Guimarães VM; Bischoff KM; Falkoski DL; Pereira OL; Gonçalves DS; de Rezende ST Appl Biochem Biotechnol; 2011 Sep; 165(2):594-610. PubMed ID: 21573756 [TBL] [Abstract][Full Text] [Related]
29. Ultrasonic enhancement of xylitol production from sugarcane bagasse using immobilized Candida tropicalis MTCC 184. Tizazu BZ; Roy K; Moholkar VS Bioresour Technol; 2018 Nov; 268():247-258. PubMed ID: 30081284 [TBL] [Abstract][Full Text] [Related]
30. Detoxification of areca nut acid hydrolysate and production of xylitol by Vardhan H; Sasmal S; Mohanty K Prep Biochem Biotechnol; 2024 Jan; 54(1):61-72. PubMed ID: 37149784 [TBL] [Abstract][Full Text] [Related]
31. Efficient detoxification of corn cob hydrolysate with ion-exchange resins for enhanced xylitol production by Candida tropicalis MTCC 6192. Kumar V; Krishania M; Preet Sandhu P; Ahluwalia V; Gnansounou E; Sangwan RS Bioresour Technol; 2018 Mar; 251():416-419. PubMed ID: 29276111 [TBL] [Abstract][Full Text] [Related]
32. Enhancement of xylitol productivity and yield using a xylitol dehydrogenase gene-disrupted mutant of Candida tropicalis under fully aerobic conditions. Ko BS; Rhee CH; Kim JH Biotechnol Lett; 2006 Aug; 28(15):1159-62. PubMed ID: 16810450 [TBL] [Abstract][Full Text] [Related]
33. Sugarcane bagasse as raw material and immobilization support for xylitol production. Santos JC; Pinto IR; Carvalho W; Mancilha IM; Felipe MG; Silva SS Appl Biochem Biotechnol; 2005; 121-124():673-83. PubMed ID: 15920271 [TBL] [Abstract][Full Text] [Related]
34. Strain improvement of Candida tropicalis for the production of xylitol: biochemical and physiological characterization of wild-type and mutant strain CT-OMV5. Rao RS; Jyothi CP; Prakasham RS; Rao CS; Sarma PN; Rao LV J Microbiol; 2006 Feb; 44(1):113-20. PubMed ID: 16554726 [TBL] [Abstract][Full Text] [Related]
35. Biotechnological production of xylitol from agroindustrial residues. Evaluation of bioprocesses. Rodrigues DC; Silva SS; Prata AM; Felipe M das G Appl Biochem Biotechnol; 1998; 70-72():869-75. PubMed ID: 9627401 [TBL] [Abstract][Full Text] [Related]
36. Evaluation of the Simultaneous Production of Xylitol and Ethanol from Sisal Fiber. Damião Xavier F; Santos Bezerra G; Florentino Melo Santos S; Sousa Conrado Oliveira L; Luiz Honorato Silva F; Joice Oliveira Silva A; Maria Conceição M Biomolecules; 2018 Jan; 8(1):. PubMed ID: 29320469 [TBL] [Abstract][Full Text] [Related]
37. The Influence of Sugar Cane Bagasse Type and Its Particle Size on Xylose Production and Xylose-to-Xylitol Bioconversion with the Yeast Debaryomyces hansenii. Aghcheh RK; Bonakdarpour B; Ashtiani FZ Appl Biochem Biotechnol; 2016 Nov; 180(6):1141-1151. PubMed ID: 27323768 [TBL] [Abstract][Full Text] [Related]
38. Effect of selected aldehydes found in the corncob hemicellulose hydrolysate on the growth and xylitol fermentation of Candida tropicalis. Wang L; Tang P; Fan X; Yuan Q Biotechnol Prog; 2013; 29(5):1181-9. PubMed ID: 23843370 [TBL] [Abstract][Full Text] [Related]
39. Bioprocessing of bagasse hydrolysate for ethanol and xylitol production using thermotolerant yeast. Kumar S; Dheeran P; Singh SP; Mishra IM; Adhikari DK Bioprocess Biosyst Eng; 2015 Jan; 38(1):39-47. PubMed ID: 25090978 [TBL] [Abstract][Full Text] [Related]
40. Xylitol production from corncob hydrolysate using polyurethane foam with immobilized Candida tropicalis. Wang L; Wu D; Tang P; Fan X; Yuan Q Carbohydr Polym; 2012 Oct; 90(2):1106-13. PubMed ID: 22840046 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]