These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

72 related articles for article (PubMed ID: 16242754)

  • 1. Evaluation of redox indicators for determining sulfate-reducing and dechlorinating conditions.
    Jones BD; Ingle JD
    Water Res; 2005 Nov; 39(18):4343-54. PubMed ID: 16242754
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Monitoring of redox state in a dechlorinating culture with immobilized redox indicators.
    Ruiz-Haas P; Ingle J
    J Environ Monit; 2009 May; 11(5):1028-36. PubMed ID: 19436861
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of immobilized redox indicators as reversible, in situ redox sensors for determining Fe(III)-reducing conditions in environmental samples.
    Jones BD; Ingle JD
    Talanta; 2001 Oct; 55(4):699-714. PubMed ID: 18968417
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of hydraulic retention time and sulfide toxicity on ethanol and acetate oxidation in sulfate-reducing metal-precipitating fluidized-bed reactor.
    Kaksonen AH; Franzmann PD; Puhakka JA
    Biotechnol Bioeng; 2004 May; 86(3):332-43. PubMed ID: 15083513
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lead removal and toxicity reduction from industrial wastewater through biological sulfate reduction process.
    Teekayuttasakul P; Annachhatre AP
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2008 Oct; 43(12):1424-30. PubMed ID: 18780220
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sulfidogenic biotreatment of synthetic acid mine drainage and sulfide oxidation in anaerobic baffled reactor.
    Bekmezci OK; Ucar D; Kaksonen AH; Sahinkaya E
    J Hazard Mater; 2011 May; 189(3):670-6. PubMed ID: 21320747
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Dechlorination of chlorinated ethenes under different redox conditions].
    Lu X; Li G; Zhang X; Zhang W
    Huan Jing Ke Xue; 2002 Mar; 23(2):29-33. PubMed ID: 12048814
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optimization of sulfide production by an indigenous consortium of sulfate-reducing bacteria for the treatment of lead-contaminated wastewater.
    Kieu TQ; Nguyen TY; Dang TY; Nguyen TB; Vuong TN; Horn H
    Bioprocess Biosyst Eng; 2015 Oct; 38(10):2003-11. PubMed ID: 26251206
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transformation of trichloroethylene by sulfate-reducing cultures enriched from a contaminated subsurface soil.
    Pavlostathis SG; Ping ZA
    Appl Microbiol Biotechnol; 1991 Dec; 36(3):416-20. PubMed ID: 1367809
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bioreactor performance and functional gene analysis of microbial community in a limited-oxygen fed bioreactor for co-reduction of sulfate and nitrate with high organic input.
    Xu XJ; Chen C; Wang AJ; Yu H; Zhou X; Guo HL; Yuan Y; Lee DJ; Zhou J; Ren NQ
    J Hazard Mater; 2014 Aug; 278():250-7. PubMed ID: 24981676
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Long term performance of an AMD treatment bioreactor using chemolithoautotrophic sulfate reduction and ferrous iron precipitation under in situ groundwater conditions.
    Bilek F; Wagner S
    Bioresour Technol; 2012 Jan; 104():221-7. PubMed ID: 22133606
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Geochemistry of redox-sensitive elements and sulfur isotopes in the high arsenic groundwater system of Datong Basin, China.
    Xie X; Ellis A; Wang Y; Xie Z; Duan M; Su C
    Sci Total Environ; 2009 Jun; 407(12):3823-35. PubMed ID: 19344934
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Neural network prediction of thermophilic (65 degrees C) sulfidogenic fluidized-bed reactor performance for the treatment of metal-containing wastewater.
    Sahinkaya E; Ozkaya B; Kaksonen AH; Puhakka JA
    Biotechnol Bioeng; 2007 Jul; 97(4):780-7. PubMed ID: 17154306
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biotreatment of sulfate-rich wastewater in an anaerobic/micro-aerobic bioreactor system.
    Chuang SH; Pai TY; Horng RY
    Environ Technol; 2005 Sep; 26(9):993-1001. PubMed ID: 16196408
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Azo dye decolorization assisted by chemical and biogenic sulfide.
    Prato-Garcia D; Cervantes FJ; Buitrón G
    J Hazard Mater; 2013 Apr; 250-251():462-8. PubMed ID: 23500427
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Adsorption of Pb(II), Cu(II), Cd(II), Zn(II), Ni(II), Fe(II), and As(V) on bacterially produced metal sulfides.
    Jong T; Parry DL
    J Colloid Interface Sci; 2004 Jul; 275(1):61-71. PubMed ID: 15158381
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sulfide response analysis for sulfide control using a pS electrode in sulfate reducing bioreactors.
    Villa-Gomez DK; Cassidy J; Keesman KJ; Sampaio R; Lens PN
    Water Res; 2014 Mar; 50():48-58. PubMed ID: 24361702
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Final products and kinetics of biochemical and chemical sulfide oxidation under microaerobic conditions.
    Pokorna-Krayzelova L; Vejmelková D; Selan L; Jenicek P; Volcke EIP; Bartacek J
    Water Sci Technol; 2018 Dec; 78(9):1916-1924. PubMed ID: 30566095
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microbial community structures and in situ sulfate-reducing and sulfur-oxidizing activities in biofilms developed on mortar specimens in a corroded sewer system.
    Satoh H; Odagiri M; Ito T; Okabe S
    Water Res; 2009 Oct; 43(18):4729-39. PubMed ID: 19709714
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Application of a long-lasting colloidal substrate with pH and hydrogen sulfide control capabilities to remediate TCE-contaminated groundwater.
    Sheu YT; Chen SC; Chien CC; Chen CC; Kao CM
    J Hazard Mater; 2015 Mar; 284():222-32. PubMed ID: 25463237
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.