BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

74 related articles for article (PubMed ID: 16242879)

  • 1. APTS-labeled dextran ladder: a novel tool to characterize cell layer tightness.
    Neuhaus W; Trzeciak J; Lauer R; Lachmann B; Noe CR
    J Pharm Biomed Anal; 2006 Mar; 40(4):1035-9. PubMed ID: 16242879
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A novel tool to characterize paracellular transport: the APTS-dextran ladder.
    Neuhaus W; Bogner E; Wirth M; Trzeciak J; Lachmann B; Gabor F; Noe CR
    Pharm Res; 2006 Jul; 23(7):1491-501. PubMed ID: 16779707
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Validation of in vitro cell culture models of the blood-brain barrier: tightness characterization of two promising cell lines.
    Neuhaus W; Plattner VE; Wirth M; Germann B; Lachmann B; Gabor F; Noe CR
    J Pharm Sci; 2008 Dec; 97(12):5158-75. PubMed ID: 18399537
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A novel flow based hollow-fiber blood-brain barrier in vitro model with immortalised cell line PBMEC/C1-2.
    Neuhaus W; Lauer R; Oelzant S; Fringeli UP; Ecker GF; Noe CR
    J Biotechnol; 2006 Aug; 125(1):127-41. PubMed ID: 16730091
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of an in vitro blood-brain barrier model based on immortalized porcine brain microvascular endothelial cells.
    Lauer R; Bauer R; Linz B; Pittner F; Peschek GA; Ecker G; Friedl P; Noe CR
    Farmaco; 2004 Feb; 59(2):133-7. PubMed ID: 14871505
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In vitro porcine blood-brain barrier model for permeability studies: pCEL-X software pKa(FLUX) method for aqueous boundary layer correction and detailed data analysis.
    Yusof SR; Avdeef A; Abbott NJ
    Eur J Pharm Sci; 2014 Dec; 65():98-111. PubMed ID: 25239510
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Porcine brain microvessel endothelial cells as an in vitro model to predict in vivo blood-brain barrier permeability.
    Zhang Y; Li CS; Ye Y; Johnson K; Poe J; Johnson S; Bobrowski W; Garrido R; Madhu C
    Drug Metab Dispos; 2006 Nov; 34(11):1935-43. PubMed ID: 16896068
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Capillary electrophoresis fingerprinting of 8-aminopyrene-1,3,6-trisulfonate derivatized nitrocellulose after partial acid depolymerization.
    Alinat E; Delaunay N; Przybylski C; Daniel R; Archer X; Gareil P
    J Chromatogr A; 2015 Mar; 1387():134-43. PubMed ID: 25702079
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electromagnetic fields (GSM 1800) do not alter blood-brain barrier permeability to sucrose in models in vitro with high barrier tightness.
    Franke H; Ringelstein EB; Stögbauer F
    Bioelectromagnetics; 2005 Oct; 26(7):529-35. PubMed ID: 16142784
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Acid-catalyzed reductive amination of aldoses with 8-aminopyrene-1,3,6-trisulfonate.
    Evangelista RA; Guttman A; Chen FT
    Electrophoresis; 1996 Feb; 17(2):347-51. PubMed ID: 8900941
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Rapid Procedure for the Purification of 8-Aminopyrene Trisulfonate (APTS)-Labeled Glycans for Capillary Electrophoresis (CE)-Based Enzyme Assays.
    Danyluk HJ; Shum LK; Zandberg WF
    Methods Mol Biol; 2017; 1588():223-236. PubMed ID: 28417373
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interleukin-1β induces an inflammatory response and the breakdown of the endothelial cell layer in an improved human THBMEC-based in vitro blood-brain barrier model.
    Labus J; Häckel S; Lucka L; Danker K
    J Neurosci Methods; 2014 May; 228():35-45. PubMed ID: 24631939
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Baicalin reduces the permeability of the blood-brain barrier during hypoxia in vitro by increasing the expression of tight junction proteins in brain microvascular endothelial cells.
    Zhu H; Wang Z; Xing Y; Gao Y; Ma T; Lou L; Lou J; Gao Y; Wang S; Wang Y
    J Ethnopharmacol; 2012 Jun; 141(2):714-20. PubMed ID: 21920425
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of bEnd5 cell line as an in vitro model for the blood-brain barrier under normal and hypoxic/aglycemic conditions.
    Yang T; Roder KE; Abbruscato TJ
    J Pharm Sci; 2007 Dec; 96(12):3196-213. PubMed ID: 17828743
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The impact of aminopyrene trisulfonate (APTS) label in acceptor glycan substrates for profiling plant pectin β-galactosyltransferase activities.
    Goetz S; Rejzek M; Nepogodiev SA; Field RA
    Carbohydr Res; 2016 Oct; 433():97-105. PubMed ID: 27479753
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In vitro models of the blood-brain barrier.
    Czupalla CJ; Liebner S; Devraj K
    Methods Mol Biol; 2014; 1135():415-37. PubMed ID: 24510883
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Closing the gap between the in-vivo and in-vitro blood-brain barrier tightness.
    Cohen-Kashi Malina K; Cooper I; Teichberg VI
    Brain Res; 2009 Aug; 1284():12-21. PubMed ID: 19501061
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Side by side comparison between dynamic versus static models of blood-brain barrier in vitro: a permeability study.
    Santaguida S; Janigro D; Hossain M; Oby E; Rapp E; Cucullo L
    Brain Res; 2006 Sep; 1109(1):1-13. PubMed ID: 16857178
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A new blood-brain barrier model using primary rat brain endothelial cells, pericytes and astrocytes.
    Nakagawa S; Deli MA; Kawaguchi H; Shimizudani T; Shimono T; Kittel A; Tanaka K; Niwa M
    Neurochem Int; 2009; 54(3-4):253-63. PubMed ID: 19111869
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-resolution capillary gel electrophoresis of reducing oligosaccharides labeled with 1-aminopyrene-3,6,8-trisulfonate.
    Guttman A; Chen FT; Evangelista RA; Cooke N
    Anal Biochem; 1996 Jan; 233(2):234-42. PubMed ID: 8789724
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.