BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

375 related articles for article (PubMed ID: 16242993)

  • 1. Methyl-coenzyme M reductase and the anaerobic oxidation of methane in methanotrophic Archaea.
    Shima S; Thauer RK
    Curr Opin Microbiol; 2005 Dec; 8(6):643-8. PubMed ID: 16242993
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Temporal evolution of methane cycling and phylogenetic diversity of archaea in sediments from a deep-sea whale-fall in Monterey Canyon, California.
    Goffredi SK; Wilpiszeski R; Lee R; Orphan VJ
    ISME J; 2008 Feb; 2(2):204-20. PubMed ID: 18219285
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Methane as fuel for anaerobic microorganisms.
    Thauer RK; Shima S
    Ann N Y Acad Sci; 2008 Mar; 1125():158-70. PubMed ID: 18096853
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Activities and distribution of methanogenic and methane-oxidizing microbes in marine sediments from the Cascadia Margin.
    Yoshioka H; Maruyama A; Nakamura T; Higashi Y; Fuse H; Sakata S; Bartlett DH
    Geobiology; 2010 Jun; 8(3):223-33. PubMed ID: 20059557
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantification of mcrA by quantitative fluorescent PCR in sediments from methane seep of the Nankai Trough.
    Nunoura T; Oida H; Toki T; Ashi J; Takai K; Horikoshi K
    FEMS Microbiol Ecol; 2006 Jul; 57(1):149-57. PubMed ID: 16819958
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A conspicuous nickel protein in microbial mats that oxidize methane anaerobically.
    Krüger M; Meyerdierks A; Glöckner FO; Amann R; Widdel F; Kube M; Reinhardt R; Kahnt J; Böcher R; Thauer RK; Shima S
    Nature; 2003 Dec; 426(6968):878-81. PubMed ID: 14685246
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Denitrifying bacteria anaerobically oxidize methane in the absence of Archaea.
    Ettwig KF; Shima S; van de Pas-Schoonen KT; Kahnt J; Medema MH; Op den Camp HJ; Jetten MS; Strous M
    Environ Microbiol; 2008 Nov; 10(11):3164-73. PubMed ID: 18721142
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Insights into the genomes of archaea mediating the anaerobic oxidation of methane.
    Meyerdierks A; Kube M; Lombardot T; Knittel K; Bauer M; Glöckner FO; Reinhardt R; Amann R
    Environ Microbiol; 2005 Dec; 7(12):1937-51. PubMed ID: 16309392
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Methanotrophic archaea detection using sequence analysis of methyl coenzyme M reductase A gene in pockmark sediments( Gdansk Basin, Baltic Sea) ].
    Merkel' AIu; Chernykh NA; Kanapatskiĭ TA; Pimenov NV
    Mikrobiologiia; 2010; 79(6):852-5. PubMed ID: 21774172
    [No Abstract]   [Full Text] [Related]  

  • 10. On the relationship between methane production and oxidation by anaerobic methanotrophic communities from cold seeps of the Gulf of Mexico.
    Orcutt B; Samarkin V; Boetius A; Joye S
    Environ Microbiol; 2008 May; 10(5):1108-17. PubMed ID: 18218032
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reverse methanogenesis: testing the hypothesis with environmental genomics.
    Hallam SJ; Putnam N; Preston CM; Detter JC; Rokhsar D; Richardson PM; DeLong EF
    Science; 2004 Sep; 305(5689):1457-62. PubMed ID: 15353801
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A marine microbial consortium apparently mediating anaerobic oxidation of methane.
    Boetius A; Ravenschlag K; Schubert CJ; Rickert D; Widdel F; Gieseke A; Amann R; Jørgensen BB; Witte U; Pfannkuche O
    Nature; 2000 Oct; 407(6804):623-6. PubMed ID: 11034209
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Environmental regulation of the anaerobic oxidation of methane: a comparison of ANME-I and ANME-II communities.
    Nauhaus K; Treude T; Boetius A; Krüger M
    Environ Microbiol; 2005 Jan; 7(1):98-106. PubMed ID: 15643940
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Environmental evidence for net methane production and oxidation in putative ANaerobic MEthanotrophic (ANME) archaea.
    Lloyd KG; Alperin MJ; Teske A
    Environ Microbiol; 2011 Sep; 13(9):2548-64. PubMed ID: 21806748
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Post-translational modifications in the active site region of methyl-coenzyme M reductase from methanogenic and methanotrophic archaea.
    Kahnt J; Buchenau B; Mahlert F; Krüger M; Shima S; Thauer RK
    FEBS J; 2007 Sep; 274(18):4913-21. PubMed ID: 17725644
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In vitro cell growth of marine archaeal-bacterial consortia during anaerobic oxidation of methane with sulfate.
    Nauhaus K; Albrecht M; Elvert M; Boetius A; Widdel F
    Environ Microbiol; 2007 Jan; 9(1):187-96. PubMed ID: 17227423
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deep-sea archaea fix and share nitrogen in methane-consuming microbial consortia.
    Dekas AE; Poretsky RS; Orphan VJ
    Science; 2009 Oct; 326(5951):422-6. PubMed ID: 19833965
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microbial community structure in methane hydrate-bearing sediments of freshwater Lake Baikal.
    Kadnikov VV; Mardanov AV; Beletsky AV; Shubenkova OV; Pogodaeva TV; Zemskaya TI; Ravin NV; Skryabin KG
    FEMS Microbiol Ecol; 2012 Feb; 79(2):348-58. PubMed ID: 22092495
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular tools for investigating ANME community structure and function.
    Hallam SJ; Pagé AP; Constan L; Song YC; Norbeck AD; Brewer H; Pasa-Tolic L
    Methods Enzymol; 2011; 494():75-90. PubMed ID: 21402210
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tracing the slow growth of anaerobic methane-oxidizing communities by (15)N-labelling techniques.
    Krüger M; Wolters H; Gehre M; Joye SB; Richnow HH
    FEMS Microbiol Ecol; 2008 Mar; 63(3):401-11. PubMed ID: 18269633
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.