These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

349 related articles for article (PubMed ID: 16243030)

  • 21. The Aspergillus nidulans Velvet-interacting protein, VipA, is involved in light-stimulated heme biosynthesis.
    Röhrig J; Yu Z; Chae KS; Kim JH; Han KH; Fischer R
    Mol Microbiol; 2017 Sep; 105(6):825-838. PubMed ID: 28657694
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A new type of mutation in phytochrome A causes enhanced light sensitivity and alters the degradation and subcellular partitioning of the photoreceptor.
    Dieterle M; Bauer D; Büche C; Krenz M; Schäfer E; Kretsch T
    Plant J; 2005 Jan; 41(1):146-61. PubMed ID: 15610357
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Two hybrid histidine kinases, TcsB and the phytochrome FphA, are involved in temperature sensing in Aspergillus nidulans.
    Yu Z; Ali A; Igbalajobi OA; Streng C; Leister K; Krauß N; Lamparter T; Fischer R
    Mol Microbiol; 2019 Dec; 112(6):1814-1830. PubMed ID: 31556180
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Phytochrome-mediated development in land plants: red light sensing evolves to meet the challenges of changing light environments.
    Mathews S
    Mol Ecol; 2006 Oct; 15(12):3483-503. PubMed ID: 17032252
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Light-regulated nucleo-cytoplasmic partitioning of phytochromes.
    Kevei E; Schafer E; Nagy F
    J Exp Bot; 2007; 58(12):3113-24. PubMed ID: 17905733
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The Zn(II)2Cys6 putative transcription factor NosA controls fruiting body formation in Aspergillus nidulans.
    Vienken K; Fischer R
    Mol Microbiol; 2006 Jul; 61(2):544-54. PubMed ID: 16780567
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Spotlight on Aspergillus nidulans photosensory systems.
    Bayram O; Braus GH; Fischer R; Rodriguez-Romero J
    Fungal Genet Biol; 2010 Nov; 47(11):900-8. PubMed ID: 20573560
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Fungi use the SakA (HogA) pathway for phytochrome-dependent light signalling.
    Yu Z; Armant O; Fischer R
    Nat Microbiol; 2016 Feb; 1():16019. PubMed ID: 27572639
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Genetic and molecular analysis of phytochromes from the filamentous fungus Neurospora crassa.
    Froehlich AC; Noh B; Vierstra RD; Loros J; Dunlap JC
    Eukaryot Cell; 2005 Dec; 4(12):2140-52. PubMed ID: 16339731
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Cyanobacterial phytochrome-like PixJ1 holoprotein shows novel reversible photoconversion between blue- and green-absorbing forms.
    Yoshihara S; Katayama M; Geng X; Ikeuchi M
    Plant Cell Physiol; 2004 Dec; 45(12):1729-37. PubMed ID: 15653792
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Evolution of cyanobacterial and plant phytochromes.
    Lamparter T
    FEBS Lett; 2004 Aug; 573(1-3):1-5. PubMed ID: 15327965
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Phytochrome from Agrobacterium tumefaciens has unusual spectral properties and reveals an N-terminal chromophore attachment site.
    Lamparter T; Michael N; Mittmann F; Esteban B
    Proc Natl Acad Sci U S A; 2002 Sep; 99(18):11628-33. PubMed ID: 12186972
    [TBL] [Abstract][Full Text] [Related]  

  • 33. On the role of the global regulator RlcA in red-light sensing in Aspergillus nidulans.
    Yu Z; Hübner J; Herrero S; Gourain V; Fischer R
    Fungal Biol; 2020 May; 124(5):447-457. PubMed ID: 32389307
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The evolution and function of blue and red light photoreceptors.
    Falciatore A; Bowler C
    Curr Top Dev Biol; 2005; 68():317-50. PubMed ID: 16125004
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Phytochrome A is an irradiance-dependent red light sensor.
    Franklin KA; Allen T; Whitelam GC
    Plant J; 2007 Apr; 50(1):108-17. PubMed ID: 17346261
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Light inhibits spore germination through phytochrome in Aspergillus nidulans.
    Röhrig J; Kastner C; Fischer R
    Curr Genet; 2013 May; 59(1-2):55-62. PubMed ID: 23385948
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The Aspergillus nidulans esdC (early sexual development) gene is necessary for sexual development and is controlled by veA and a heterotrimeric G protein.
    Han KH; Kim JH; Moon H; Kim S; Lee SS; Han DM; Jahng KY; Chae KS
    Fungal Genet Biol; 2008 Mar; 45(3):310-8. PubMed ID: 17977758
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Phytochromes and Cyanobacteriochromes: Photoreceptor Molecules Incorporating a Linear Tetrapyrrole Chromophore.
    Fushimi K; Narikawa R
    Adv Exp Med Biol; 2021; 1293():167-187. PubMed ID: 33398813
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Proteome analysis of Aspergillus nidulans reveals proteins associated with the response to the antibiotic concanamycin A, produced by Streptomyces species.
    Melin P; Schnürer J; Wagner EG
    Mol Genet Genomics; 2002 Aug; 267(6):695-702. PubMed ID: 12207217
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Light is required for conidiation in Aspergillus nidulans.
    Mooney JL; Yager LN
    Genes Dev; 1990 Sep; 4(9):1473-82. PubMed ID: 2253875
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.