These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. A naturally occurring plant cysteine protease possesses remarkable toxicity against insect pests and synergizes Bacillus thuringiensis toxin. Mohan S; Ma PW; Williams WP; Luthe DS PLoS One; 2008 Mar; 3(3):e1786. PubMed ID: 18335057 [TBL] [Abstract][Full Text] [Related]
6. Heterologous expression of maize (Zea mays L.) Mir1 cysteine proteinase in eukaryotic and prokaryotic expression systems. Pechan T; Ma PW; Luthe DS Protein Expr Purif; 2004 Mar; 34(1):134-41. PubMed ID: 14766309 [TBL] [Abstract][Full Text] [Related]
7. Mir1-CP, a novel defense cysteine protease accumulates in maize vascular tissues in response to herbivory. Lopez L; Camas A; Shivaji R; Ankala A; Williams P; Luthe D Planta; 2007 Jul; 226(2):517-27. PubMed ID: 17351787 [TBL] [Abstract][Full Text] [Related]
8. Integration of ethylene and jasmonic acid signaling pathways in the expression of maize defense protein Mir1-CP. Ankala A; Luthe DS; Williams WP; Wilkinson JR Mol Plant Microbe Interact; 2009 Dec; 22(12):1555-64. PubMed ID: 19888821 [TBL] [Abstract][Full Text] [Related]
9. Midgut cysteine protease-inhibiting activity in Trichoplusia ni protects the peritrophic membrane from degradation by plant cysteine proteases. Li C; Song X; Li G; Wang P Insect Biochem Mol Biol; 2009 Oct; 39(10):726-34. PubMed ID: 19729065 [TBL] [Abstract][Full Text] [Related]
10. Intraplant communication in maize contributes to defense against insects. Varsani S; Basu S; Williams WP; Felton GW; Luthe DS; Louis J Plant Signal Behav; 2016 Aug; 11(8):e1212800. PubMed ID: 27467304 [TBL] [Abstract][Full Text] [Related]
11. A unique 33-kD cysteine proteinase accumulates in response to larval feeding in maize genotypes resistant to fall armyworm and other Lepidoptera. Pechan T; Ye L; Chang Y; Mitra A; Lin L; Davis FM; Williams WP; Luthe DS Plant Cell; 2000 Jul; 12(7):1031-40. PubMed ID: 10899972 [TBL] [Abstract][Full Text] [Related]
12. Oral toxicity of beta-N-acetyl hexosaminidase to insects. Dowd PF; Johnson ET; Pinkerton TS J Agric Food Chem; 2007 May; 55(9):3421-8. PubMed ID: 17417870 [TBL] [Abstract][Full Text] [Related]
13. Toward the physiological basis for increased Agrotis ipsilon multiple nucleopolyhedrovirus infection following feeding of Agrotis ipsilon larvae on transgenic corn expressing Cry1Fa2. Schmidt NR; Haywood JM; Bonning BC J Invertebr Pathol; 2009 Oct; 102(2):141-8. PubMed ID: 19651136 [TBL] [Abstract][Full Text] [Related]
14. Aboveground to belowground herbivore defense signaling in maize: a two-way street? Luthe DS; Gill T; Zhu L; Lopéz L; Pechanova O; Shivaji R; Ankala A; Williams WP Plant Signal Behav; 2011 Jan; 6(1):126-9. PubMed ID: 21270535 [TBL] [Abstract][Full Text] [Related]
15. The peritrophic membrane of Spodoptera frugiperda: secretion of peritrophins and role in immobilization and recycling digestive enzymes. Bolognesi R; Ribeiro AF; Terra WR; Ferreira C Arch Insect Biochem Physiol; 2001 Jun; 47(2):62-75. PubMed ID: 11376453 [TBL] [Abstract][Full Text] [Related]
16. Molecular structure of the peritrophic membrane (PM): identification of potential PM target sites for insect control. Wang P; Granados RR Arch Insect Biochem Physiol; 2001 Jun; 47(2):110-8. PubMed ID: 11376457 [TBL] [Abstract][Full Text] [Related]
17. Accumulation of a maize proteinase inhibitor in response to wounding and insect feeding, and characterization of its activity toward digestive proteinases of Spodoptera littoralis larvae. Tamayo MC; Rufat M; Bravo JM; San Segundo B Planta; 2000 Jun; 211(1):62-71. PubMed ID: 10923704 [TBL] [Abstract][Full Text] [Related]
18. The peritrophic membrane as a target of proteins that play important roles in plant defense and microbial attack. Konno K; Mitsuhashi W J Insect Physiol; 2019; 117():103912. PubMed ID: 31301311 [TBL] [Abstract][Full Text] [Related]
19. Plant-mediated alteration of the peritrophic matrix and baculovirus infection in lepidopteran larvae. Plymale R; Grove MJ; Cox-Foster D; Ostiguy N; Hoover K J Insect Physiol; 2008 Apr; 54(4):737-49. PubMed ID: 18374352 [TBL] [Abstract][Full Text] [Related]
20. Comparative physical localization of maize mir1 gene in Zea mays L. and Coix lacryma-jobi L. Han YH; Wang XL; Liu LH; Song YC Yi Chuan Xue Bao; 2004 Apr; 31(4):335-9. PubMed ID: 15487499 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]