These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
144 related articles for article (PubMed ID: 16243488)
1. LRRK1 protein kinase activity is stimulated upon binding of GTP to its Roc domain. Korr D; Toschi L; Donner P; Pohlenz HD; Kreft B; Weiss B Cell Signal; 2006 Jun; 18(6):910-20. PubMed ID: 16243488 [TBL] [Abstract][Full Text] [Related]
2. The Parkinson's disease-associated protein, leucine-rich repeat kinase 2 (LRRK2), is an authentic GTPase that stimulates kinase activity. Guo L; Gandhi PN; Wang W; Petersen RB; Wilson-Delfosse AL; Chen SG Exp Cell Res; 2007 Oct; 313(16):3658-70. PubMed ID: 17706965 [TBL] [Abstract][Full Text] [Related]
3. Homo- and heterodimerization of ROCO kinases: LRRK2 kinase inhibition by the LRRK2 ROCO fragment. Klein CL; Rovelli G; Springer W; Schall C; Gasser T; Kahle PJ J Neurochem; 2009 Nov; 111(3):703-15. PubMed ID: 19712061 [TBL] [Abstract][Full Text] [Related]
4. Human leucine-rich repeat kinase 1 and 2: intersecting or unrelated functions? Civiero L; Bubacco L Biochem Soc Trans; 2012 Oct; 40(5):1095-101. PubMed ID: 22988872 [TBL] [Abstract][Full Text] [Related]
5. Mutations in LRRK2/dardarin associated with Parkinson disease are more toxic than equivalent mutations in the homologous kinase LRRK1. Greggio E; Lewis PA; van der Brug MP; Ahmad R; Kaganovich A; Ding J; Beilina A; Baker AK; Cookson MR J Neurochem; 2007 Jul; 102(1):93-102. PubMed ID: 17394548 [TBL] [Abstract][Full Text] [Related]
6. GTP binding is essential to the protein kinase activity of LRRK2, a causative gene product for familial Parkinson's disease. Ito G; Okai T; Fujino G; Takeda K; Ichijo H; Katada T; Iwatsubo T Biochemistry; 2007 Feb; 46(5):1380-8. PubMed ID: 17260967 [TBL] [Abstract][Full Text] [Related]
7. The Parkinson disease gene LRRK2: evolutionary and structural insights. MarĂn I Mol Biol Evol; 2006 Dec; 23(12):2423-33. PubMed ID: 16966681 [TBL] [Abstract][Full Text] [Related]
8. The dual enzyme LRRK2 hydrolyzes GTP in both its GTPase and kinase domains in vitro. Liu Z; West AB Biochim Biophys Acta Proteins Proteom; 2017 Mar; 1865(3):274-280. PubMed ID: 27939437 [TBL] [Abstract][Full Text] [Related]
9. Revisiting the Roco G-protein cycle. Terheyden S; Ho FY; Gilsbach BK; Wittinghofer A; Kortholt A Biochem J; 2015 Jan; 465(1):139-47. PubMed ID: 25317655 [TBL] [Abstract][Full Text] [Related]
10. Leucine-rich repeat kinase-1 regulates osteoclast function by modulating RAC1/Cdc42 Small GTPase phosphorylation and activation. Zeng C; Goodluck H; Qin X; Liu B; Mohan S; Xing W Am J Physiol Endocrinol Metab; 2016 Oct; 311(4):E772-E780. PubMed ID: 27600824 [TBL] [Abstract][Full Text] [Related]
11. LRRK2 kinase activity is dependent on LRRK2 GTP binding capacity but independent of LRRK2 GTP binding. Taymans JM; Vancraenenbroeck R; Ollikainen P; Beilina A; Lobbestael E; De Maeyer M; Baekelandt V; Cookson MR PLoS One; 2011; 6(8):e23207. PubMed ID: 21858031 [TBL] [Abstract][Full Text] [Related]
12. Oncogenic Dbl, Cdc42, and p21-activated kinase form a ternary signaling intermediate through the minimum interactive domains. Wang L; Zhu K; Zheng Y Biochemistry; 2004 Nov; 43(46):14584-93. PubMed ID: 15544329 [TBL] [Abstract][Full Text] [Related]
13. A brain serine/threonine protein kinase activated by Cdc42 and Rac1. Manser E; Leung T; Salihuddin H; Zhao ZS; Lim L Nature; 1994 Jan; 367(6458):40-6. PubMed ID: 8107774 [TBL] [Abstract][Full Text] [Related]
14. LRRK2 autophosphorylation enhances its GTPase activity. Liu Z; Mobley JA; DeLucas LJ; Kahn RA; West AB FASEB J; 2016 Jan; 30(1):336-47. PubMed ID: 26396237 [TBL] [Abstract][Full Text] [Related]
15. PKC isoforms activate LRRK1 kinase by phosphorylating conserved residues (Ser1064, Ser1074 and Thr1075) within the CORB GTPase domain. Malik AU; Karapetsas A; Nirujogi RS; Chatterjee D; Phung TK; Wightman M; Gourlay R; Morrice N; Mathea S; Knapp S; Alessi DR Biochem J; 2022 Sep; 479(18):1941-1965. PubMed ID: 36040231 [TBL] [Abstract][Full Text] [Related]
16. Biochemical and functional characterization of the ROC domain of DAPK establishes a new paradigm of GTP regulation in ROCO proteins. Bialik S; Kimchi A Biochem Soc Trans; 2012 Oct; 40(5):1052-7. PubMed ID: 22988864 [TBL] [Abstract][Full Text] [Related]
17. Different structural requirements within the switch II region of the Ras protein for interactions with specific downstream targets. Moodie SA; Paris M; Villafranca E; Kirshmeier P; Willumsen BM; Wolfman A Oncogene; 1995 Aug; 11(3):447-54. PubMed ID: 7630628 [TBL] [Abstract][Full Text] [Related]
18. Structure-activity relationships in flexible protein domains: regulation of rho GTPases by RhoGDI and D4 GDI. Golovanov AP; Chuang TH; DerMardirossian C; Barsukov I; Hawkins D; Badii R; Bokoch GM; Lian LY; Roberts GC J Mol Biol; 2001 Jan; 305(1):121-35. PubMed ID: 11114252 [TBL] [Abstract][Full Text] [Related]
19. Chemical IN04 Inhibits the Kinase Domain not the ROC Domain of LRRK1: Results from Homology Modeling and Molecular Docking. Chen Z; Xing W; Fan L Med Chem; 2021; 17(10):1140-1150. PubMed ID: 32972350 [TBL] [Abstract][Full Text] [Related]
20. GTP binding controls complex formation by the human ROCO protein MASL1. Dihanich S; Civiero L; Manzoni C; Mamais A; Bandopadhyay R; Greggio E; Lewis PA FEBS J; 2014 Jan; 281(1):261-74. PubMed ID: 24286120 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]