These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

313 related articles for article (PubMed ID: 1624419)

  • 61. Lipid chemotaxis and signal transduction in Myxococcus xanthus.
    Kearns DB; Shimkets LJ
    Trends Microbiol; 2001 Mar; 9(3):126-9. PubMed ID: 11239790
    [TBL] [Abstract][Full Text] [Related]  

  • 62. A DnaK homolog in Myxococcus xanthus is involved in social motility and fruiting body formation.
    Yang Z; Geng Y; Shi W
    J Bacteriol; 1998 Jan; 180(2):218-24. PubMed ID: 9440508
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Phosphorylation-dependent localization of the response regulator FrzZ signals cell reversals in Myxococcus xanthus.
    Kaimer C; Zusman DR
    Mol Microbiol; 2013 May; 88(4):740-53. PubMed ID: 23551551
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Branched-chain fatty acids: the case for a novel form of cell-cell signalling during Myxococcus xanthus development.
    Downard J; Toal D
    Mol Microbiol; 1995 Apr; 16(2):171-5. PubMed ID: 7565080
    [TBL] [Abstract][Full Text] [Related]  

  • 65. The cell surface-associated intercellular C-signal induces behavioral changes in individual Myxococcus xanthus cells during fruiting body morphogenesis.
    Jelsbak L; Søgaard-Andersen L
    Proc Natl Acad Sci U S A; 1999 Apr; 96(9):5031-6. PubMed ID: 10220413
    [TBL] [Abstract][Full Text] [Related]  

  • 66. An in vitro study of the methylation of methyl-accepting chemotaxis protein of Escherichia coli. Construction of the system and effect of mutant proteins on the system.
    Minoshima S; Ohba M; Hayashi H
    J Biochem; 1981 Feb; 89(2):411-20. PubMed ID: 7016848
    [TBL] [Abstract][Full Text] [Related]  

  • 67. A Myxococcus xanthus rppA-mmrA double mutant exhibits reduced uptake of amino acids and tolerance of some antimicrobials.
    Kimura Y; Ishida S; Matoba H; Okahisa N
    FEMS Microbiol Lett; 2004 Sep; 238(1):145-50. PubMed ID: 15336415
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Analysing protein-protein interactions of the Myxococcus xanthus Dif signalling pathway using the yeast two-hybrid system.
    Lancero HL; Castaneda S; Caberoy NB; Ma X; Garza AG; Shi W
    Microbiology (Reading); 2005 May; 151(Pt 5):1535-1541. PubMed ID: 15870463
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Nitrate-dependent activation of the Dif signaling pathway of Myxococcus xanthus mediated by a NarX-DifA interspecies chimera.
    Xu Q; Black WP; Ward SM; Yang Z
    J Bacteriol; 2005 Sep; 187(18):6410-8. PubMed ID: 16159775
    [TBL] [Abstract][Full Text] [Related]  

  • 70. "Frizzy" genes of Myxococcus xanthus are involved in control of frequency of reversal of gliding motility.
    Blackhart BD; Zusman DR
    Proc Natl Acad Sci U S A; 1985 Dec; 82(24):8767-70. PubMed ID: 3936045
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Myxococcus xanthus displays Frz-dependent chemokinetic behavior during vegetative swarming.
    Ward MJ; Mok KC; Zusman DR
    J Bacteriol; 1998 Jan; 180(2):440-3. PubMed ID: 9440539
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Type IV pili function upstream of the Dif chemotaxis pathway in Myxococcus xanthus EPS regulation.
    Black WP; Xu Q; Yang Z
    Mol Microbiol; 2006 Jul; 61(2):447-56. PubMed ID: 16856943
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Fatty Acid Oxidation Is Required for Myxococcus xanthus Development.
    Bullock HA; Shen H; Boynton TO; Shimkets LJ
    J Bacteriol; 2018 May; 200(10):. PubMed ID: 29507089
    [No Abstract]   [Full Text] [Related]  

  • 74. EspA, an orphan hybrid histidine protein kinase, regulates the timing of expression of key developmental proteins of Myxococcus xanthus.
    Higgs PI; Jagadeesan S; Mann P; Zusman DR
    J Bacteriol; 2008 Jul; 190(13):4416-26. PubMed ID: 18390653
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Myxococcus xanthus chemotaxis homologs DifD and DifG negatively regulate fibril polysaccharide production.
    Black WP; Yang Z
    J Bacteriol; 2004 Feb; 186(4):1001-8. PubMed ID: 14761994
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Intercellular signaling during fruiting-body development of Myxococcus xanthus.
    Shimkets LJ
    Annu Rev Microbiol; 1999; 53():525-49. PubMed ID: 10547700
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Protein and lipid methylation by methionine and S-adenosylmethionine in Myxococcus xanthus.
    Panasenko SM
    Can J Microbiol; 1983 Sep; 29(9):1224-8. PubMed ID: 6418366
    [TBL] [Abstract][Full Text] [Related]  

  • 78. In vitro methylation and demethylation of methyl-accepting chemotaxis proteins in Bacillus subtilis.
    Goldman DJ; Ordal GW
    Biochemistry; 1984 Jun; 23(12):2600-6. PubMed ID: 6432032
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Exopolysaccharides promote Myxococcus xanthus social motility by inhibiting cellular reversals.
    Zhou T; Nan B
    Mol Microbiol; 2017 Feb; 103(4):729-743. PubMed ID: 27874229
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Function of MglA, a 22-kilodalton protein essential for gliding in Myxococcus xanthus.
    Hartzell P; Kaiser D
    J Bacteriol; 1991 Dec; 173(23):7615-24. PubMed ID: 1938957
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.