These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 16244465)

  • 1. The comparative morphology of the cerebellum in caprimulgiform birds: evolutionary and functional implications.
    Iwaniuk AN; Hurd PL; Wylie DR
    Brain Behav Evol; 2006; 67(1):53-68. PubMed ID: 16244465
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The evolution of stereopsis and the Wulst in caprimulgiform birds: A comparative analysis.
    Iwaniuk AN; Wylie DR
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2006 Dec; 192(12):1313-26. PubMed ID: 16944165
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The RAG-1 exon in the avian order Caprimulgiformes: phylogeny, heterozygosity, and base composition.
    Barrowclough GF; Groth JG; Mertz LA
    Mol Phylogenet Evol; 2006 Oct; 41(1):238-48. PubMed ID: 16814574
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A molecular phylogenetic survey of the nightjars and allies (Caprimulgiformes) with special emphasis on the potoos (Nyctibiidae).
    Mariaux J; Braun MJ
    Mol Phylogenet Evol; 1996 Oct; 6(2):228-44. PubMed ID: 8899725
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparative morphology of the avian cerebellum: II. Size of folia.
    Iwaniuk AN; Hurd PL; Wylie DR
    Brain Behav Evol; 2007; 69(3):196-219. PubMed ID: 17108672
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Convergent evolution of strigiform and caprimulgiform dark-activity is supported by phylogenetic analysis using the arylalkylamine N-acetyltransferase (Aanat) gene.
    Fidler AE; Kuhn S; Gwinner E
    Mol Phylogenet Evol; 2004 Dec; 33(3):908-21. PubMed ID: 15522812
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evolutionary and Ecological Correlates of Quiet Flight in Nightbirds, Hawks, Falcons, and Owls.
    Clark CJ; LePiane K; Liu L
    Integr Comp Biol; 2020 Nov; 60(5):1123-1134. PubMed ID: 32426839
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A molecular phylogenetic survey of caprimulgiform nightbirds illustrates the utility of non-coding sequences.
    Braun MJ; Huddleston CJ
    Mol Phylogenet Evol; 2009 Dec; 53(3):948-60. PubMed ID: 19720151
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The evolution of cerebrotypes in birds.
    Iwaniuk AN; Hurd PL
    Brain Behav Evol; 2005; 65(4):215-30. PubMed ID: 15761215
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparative morphology of the avian cerebellum: I. Degree of foliation.
    Iwaniuk AN; Hurd PL; Wylie DR
    Brain Behav Evol; 2006; 68(1):45-62. PubMed ID: 16717442
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Eye shape and retinal topography in owls (Aves: Strigiformes).
    Lisney TJ; Iwaniuk AN; Bandet MV; Wylie DR
    Brain Behav Evol; 2012; 79(4):218-36. PubMed ID: 22722085
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Avian thermoregulation in the heat: evaporative cooling capacity of arid-zone Caprimulgiformes from two continents.
    Talbot WA; McWhorter TJ; Gerson AR; McKechnie AE; Wolf BO
    J Exp Biol; 2017 Oct; 220(Pt 19):3488-3498. PubMed ID: 28760832
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The comparative approach and brain-behaviour relationships: a tool for understanding tool use.
    Iwaniuk AN; Lefebvre L; Wylie DR
    Can J Exp Psychol; 2009 Jun; 63(2):150-9. PubMed ID: 19485606
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Podargiform affinities of the enigmatic Fluvioviridavis platyrhamphus and the early diversification of Strisores ("Caprimulgiformes" + Apodiformes).
    Nesbitt SJ; Ksepka DT; Clarke JA
    PLoS One; 2011; 6(11):e26350. PubMed ID: 22140427
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Seasonal variation in thermal energetics of the Australian owlet-nightjar (Aegotheles cristatus).
    Doucette LI; Geiser F
    Comp Biochem Physiol A Mol Integr Physiol; 2008 Dec; 151(4):615-20. PubMed ID: 18721893
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Septa and processes: convergent evolution of the orbit in haplorhine primates and strigiform birds.
    Menegaz RA; Kirk EC
    J Hum Evol; 2009 Dec; 57(6):672-87. PubMed ID: 19733900
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Avian thermoregulation in the heat: is evaporative cooling more economical in nocturnal birds?
    O'Connor RS; Smit B; Talbot WA; Gerson AR; Brigham RM; Wolf BO; McKechnie AE
    J Exp Biol; 2018 Sep; 221(Pt 17):. PubMed ID: 29950448
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Toward resolving deep neoaves phylogeny: data, signal enhancement, and priors.
    Pratt RC; Gibb GC; Morgan-Richards M; Phillips MJ; Hendy MD; Penny D
    Mol Biol Evol; 2009 Feb; 26(2):313-26. PubMed ID: 18981298
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Anatomical Specializations Related to Foraging in the Visual System of a Nocturnal Insectivorous Bird, the Band-Winged Nightjar (Aves: Caprimulgiformes).
    Salazar JE; Severin D; Vega-Zuniga T; Fernández-Aburto P; Deichler A; Sallaberry A M; Mpodozis J
    Brain Behav Evol; 2019; 94(1-4):27-36. PubMed ID: 31751995
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evolutionary patterns of MHC class II B in owls and their implications for the understanding of avian MHC evolution.
    Burri R; Hirzel HN; Salamin N; Roulin A; Fumagalli L
    Mol Biol Evol; 2008 Jun; 25(6):1180-91. PubMed ID: 18359775
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.