BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 16244659)

  • 1. An Anopheles transgenic sexing strain for vector control.
    Catteruccia F; Benton JP; Crisanti A
    Nat Biotechnol; 2005 Nov; 23(11):1414-7. PubMed ID: 16244659
    [TBL] [Abstract][Full Text] [Related]  

  • 2. GM sterile mosquitoes--a cautionary note.
    Knols BG; Hood-Nowotny RC; Bossin H; Franz G; Robinson A; Mukabana WR; Kemboi SK
    Nat Biotechnol; 2006 Sep; 24(9):1067-8; discussion 1068. PubMed ID: 16964206
    [No Abstract]   [Full Text] [Related]  

  • 3. Green light for mosquito control.
    Atkinson PW
    Nat Biotechnol; 2005 Nov; 23(11):1371-2. PubMed ID: 16273064
    [No Abstract]   [Full Text] [Related]  

  • 4. Development of a population suppression strain of the human malaria vector mosquito, Anopheles stephensi.
    Marinotti O; Jasinskiene N; Fazekas A; Scaife S; Fu G; Mattingly ST; Chow K; Brown DM; Alphey L; James AA
    Malar J; 2013 Apr; 12():142. PubMed ID: 23622561
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular tools and genetic markers for the generation of transgenic sexing strains in Anopheline mosquitoes.
    Bernardini F; Haghighat-Khah RE; Galizi R; Hammond AM; Nolan T; Crisanti A
    Parasit Vectors; 2018 Dec; 11(Suppl 2):660. PubMed ID: 30583738
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of stable ectopic expression of the primary sex determination gene Yob in the mosquito Anopheles gambiae.
    Krzywinska E; Krzywinski J
    Parasit Vectors; 2018 Dec; 11(Suppl 2):648. PubMed ID: 30583747
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of transgenic strains for the biological control of the Mexican fruit fly, Anastrepha ludens.
    Meza JS; Nirmala X; Zimowska GJ; Zepeda-Cisneros CS; Handler AM
    Genetica; 2011 Jan; 139(1):53-62. PubMed ID: 20737195
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hopes for sterile males.
    Williams N
    Curr Biol; 2005 Dec; 15(23):R941. PubMed ID: 16395785
    [No Abstract]   [Full Text] [Related]  

  • 9. Transgenic technologies to induce sterility.
    Catteruccia F; Crisanti A; Wimmer EA
    Malar J; 2009 Nov; 8 Suppl 2(Suppl 2):S7. PubMed ID: 19917077
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Large-cage assessment of a transgenic sex-ratio distortion strain on populations of an African malaria vector.
    Facchinelli L; North AR; Collins CM; Menichelli M; Persampieri T; Bucci A; Spaccapelo R; Crisanti A; Benedict MQ
    Parasit Vectors; 2019 Feb; 12(1):70. PubMed ID: 30728060
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Isolation and characterization of a temperature-sensitive lethal strain of Anopheles arabiensis for SIT-based application.
    Ndo C; Poumachu Y; Metitsi D; Awono-Ambene HP; Tchuinkam T; Gilles JLR; Bourtzis K
    Parasit Vectors; 2018 Dec; 11(Suppl 2):659. PubMed ID: 30583745
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gal4-based enhancer-trapping in the malaria mosquito Anopheles stephensi.
    O'Brochta DA; Pilitt KL; Harrell RA; Aluvihare C; Alford RT
    G3 (Bethesda); 2012 Nov; 2(11):1305-15. PubMed ID: 23173082
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Life-history traits of a fluorescent Anopheles arabiensis genetic sexing strain introgressed into South African genomic background.
    Ntoyi NL; Mashatola T; Bouyer J; Kraupa C; Maiga H; Mamai W; Bimbile-Somda NS; Wallner T; Carvalho DO; Munhenga G; Yamada H
    Malar J; 2022 Sep; 21(1):254. PubMed ID: 36064699
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A transgenic tool to assess Anopheles mating competitiveness in the field.
    Smidler AL; Scott SN; Mameli E; Shaw WR; Catteruccia F
    Parasit Vectors; 2018 Dec; 11(Suppl 2):651. PubMed ID: 30583744
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Highly efficient Cas9-mediated gene drive for population modification of the malaria vector mosquito Anopheles stephensi.
    Gantz VM; Jasinskiene N; Tatarenkova O; Fazekas A; Macias VM; Bier E; James AA
    Proc Natl Acad Sci U S A; 2015 Dec; 112(49):E6736-43. PubMed ID: 26598698
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exogenous gypsy insulator sequences modulate transgene expression in the malaria vector mosquito, Anopheles stephensi.
    Carballar-LejarazĂș R; Jasinskiene N; James AA
    Proc Natl Acad Sci U S A; 2013 Apr; 110(18):7176-81. PubMed ID: 23584017
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Impact of genetic manipulation on the fitness of Anopheles stephensi mosquitoes.
    Catteruccia F; Godfray HC; Crisanti A
    Science; 2003 Feb; 299(5610):1225-7. PubMed ID: 12595691
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A synthetic male-specific sterilization system using the mammalian pro-apoptotic factor in a malaria vector mosquito.
    Yamamoto DS; Sumitani M; Kasashima K; Sezutsu H; Matsuoka H; Kato H
    Sci Rep; 2019 Jun; 9(1):8160. PubMed ID: 31160726
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-resolution transcriptional profiling of Anopheles gambiae spermatogenesis reveals mechanisms of sex chromosome regulation.
    Taxiarchi C; Kranjc N; Kriezis A; Kyrou K; Bernardini F; Russell S; Nolan T; Crisanti A; Galizi R
    Sci Rep; 2019 Oct; 9(1):14841. PubMed ID: 31619757
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fitness of transgenic Anopheles stephensi mosquitoes expressing the SM1 peptide under the control of a vitellogenin promoter.
    Li C; Marrelli MT; Yan G; Jacobs-Lorena M
    J Hered; 2008; 99(3):275-82. PubMed ID: 18334506
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.