BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 16244659)

  • 21. piggyBac transposon remobilization and enhancer detection in Anopheles mosquitoes.
    O'Brochta DA; Alford RT; Pilitt KL; Aluvihare CU; Harrell RA
    Proc Natl Acad Sci U S A; 2011 Sep; 108(39):16339-44. PubMed ID: 21930941
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Comparative fitness assessment of Anopheles stephensi transgenic lines receptive to site-specific integration.
    Amenya DA; Bonizzoni M; Isaacs AT; Jasinskiene N; Chen H; Marinotti O; Yan G; James AA
    Insect Mol Biol; 2010 Apr; 19(2):263-9. PubMed ID: 20113372
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Molecular tools to create new strains for mosquito sexing and vector control.
    Häcker I; Schetelig MF
    Parasit Vectors; 2018 Dec; 11(Suppl 2):645. PubMed ID: 30583736
    [TBL] [Abstract][Full Text] [Related]  

  • 24. piggyBac-mediated germline transformation of the malaria mosquito Anopheles stephensi using the red fluorescent protein dsRED as a selectable marker.
    Nolan T; Bower TM; Brown AE; Crisanti A; Catteruccia F
    J Biol Chem; 2002 Mar; 277(11):8759-62. PubMed ID: 11805082
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Experimental population modification of the malaria vector mosquito, Anopheles stephensi.
    Pham TB; Phong CH; Bennett JB; Hwang K; Jasinskiene N; Parker K; Stillinger D; Marshall JM; Carballar-Lejarazú R; James AA
    PLoS Genet; 2019 Dec; 15(12):e1008440. PubMed ID: 31856182
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Efficient transformation of the yellow fever mosquito Aedes aegypti using the piggyBac transposable element vector pBac[3xP3-EGFP afm].
    Kokoza V; Ahmed A; Wimmer EA; Raikhel AS
    Insect Biochem Mol Biol; 2001 Nov; 31(12):1137-43. PubMed ID: 11583926
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A perspective on the need and current status of efficient sex separation methods for mosquito genetic control.
    Papathanos PA; Bourtzis K; Tripet F; Bossin H; Virginio JF; Capurro ML; Pedrosa MC; Guindo A; Sylla L; Coulibaly MB; Yao FA; Epopa PS; Diabate A
    Parasit Vectors; 2018 Dec; 11(Suppl 2):654. PubMed ID: 30583720
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Germline transformation of the malaria vector, Anopheles gambiae, with the piggyBac transposable element.
    Grossman GL; Rafferty CS; Clayton JR; Stevens TK; Mukabayire O; Benedict MQ
    Insect Mol Biol; 2001 Dec; 10(6):597-604. PubMed ID: 11903629
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Fitness of anopheline mosquitoes expressing transgenes that inhibit Plasmodium development.
    Moreira LA; Wang J; Collins FH; Jacobs-Lorena M
    Genetics; 2004 Mar; 166(3):1337-41. PubMed ID: 15082552
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Germ-line transformation of the South American malaria vector, Anopheles albimanus, with a piggyBac/EGFP transposon vector is routine and highly efficient.
    Perera OP; Harrell II RA; Handler AM
    Insect Mol Biol; 2002 Aug; 11(4):291-7. PubMed ID: 12144693
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Mosquito transgenic technologies to reduce Plasmodium transmission.
    Fuchs S; Nolan T; Crisanti A
    Methods Mol Biol; 2013; 923():601-22. PubMed ID: 22990807
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Stable and heritable gene silencing in the malaria vector Anopheles stephensi.
    Brown AE; Bugeon L; Crisanti A; Catteruccia F
    Nucleic Acids Res; 2003 Aug; 31(15):e85. PubMed ID: 12888537
    [TBL] [Abstract][Full Text] [Related]  

  • 33. nanos-Driven expression of piggyBac transposase induces mobilization of a synthetic autonomous transposon in the malaria vector mosquito, Anopheles stephensi.
    Macias VM; Jimenez AJ; Burini-Kojin B; Pledger D; Jasinskiene N; Phong CH; Chu K; Fazekas A; Martin K; Marinotti O; James AA
    Insect Biochem Mol Biol; 2017 Aug; 87():81-89. PubMed ID: 28676355
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Transgenic characterization of two testis-specific promoters in the silkworm, Bombyx mori.
    Xu J; Bi H; Chen R; Aslam AF; Li Z; Ling L; Zeng B; Huang Y; Tan A
    Insect Mol Biol; 2015 Apr; 24(2):183-90. PubMed ID: 25387604
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Analysis of two novel midgut-specific promoters driving transgene expression in Anopheles stephensi mosquitoes.
    Nolan T; Petris E; Müller HM; Cronin A; Catteruccia F; Crisanti A
    PLoS One; 2011 Feb; 6(2):e16471. PubMed ID: 21326609
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Post-integration behavior of a Minos transposon in the malaria mosquito Anopheles stephensi.
    Scali C; Nolan T; Sharakhov I; Sharakhova M; Crisanti A; Catteruccia F
    Mol Genet Genomics; 2007 Nov; 278(5):575-84. PubMed ID: 17638017
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Stable germline transformation of the malaria mosquito Anopheles stephensi.
    Catteruccia F; Nolan T; Loukeris TG; Blass C; Savakis C; Kafatos FC; Crisanti A
    Nature; 2000 Jun; 405(6789):959-62. PubMed ID: 10879538
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Next-generation gene drive for population modification of the malaria vector mosquito,
    Carballar-Lejarazú R; Ogaugwu C; Tushar T; Kelsey A; Pham TB; Murphy J; Schmidt H; Lee Y; Lanzaro GC; James AA
    Proc Natl Acad Sci U S A; 2020 Sep; 117(37):22805-22814. PubMed ID: 32839345
    [TBL] [Abstract][Full Text] [Related]  

  • 39. piggyBac-mediated germline transformation of the malaria mosquito Anopheles sinensis (Diptera: Culicidae).
    Liu JG; Qiao L; Zhang JJ; Chen B; He ZB
    Insect Sci; 2021 Aug; 28(4):1202-1206. PubMed ID: 32519503
    [No Abstract]   [Full Text] [Related]  

  • 40. Reflections on the Anopheles gambiae genome sequence, transgenic mosquitoes and the prospect for controlling malaria and other vector borne diseases.
    Tabachnick WJ
    J Med Entomol; 2003 Sep; 40(5):597-606. PubMed ID: 14596272
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.