These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 16244659)

  • 41. Transgenic Anopheles stephensi coexpressing single-chain antibodies resist Plasmodium falciparum development.
    Isaacs AT; Jasinskiene N; Tretiakov M; Thiery I; Zettor A; Bourgouin C; James AA
    Proc Natl Acad Sci U S A; 2012 Jul; 109(28):E1922-30. PubMed ID: 22689959
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Assessing the acoustic behaviour of Anopheles gambiae (s.l.) dsxF mutants: implications for vector control.
    Su MP; Georgiades M; Bagi J; Kyrou K; Crisanti A; Albert JT
    Parasit Vectors; 2020 Oct; 13(1):507. PubMed ID: 33028410
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Production of a transgenic mosquito expressing circumsporozoite protein, a malarial protein, in the salivary gland of Anopheles stephensi (Diptera: Culicidae).
    Matsuoka H; Ikezawa T; Hirai M
    Acta Med Okayama; 2010 Aug; 64(4):233-41. PubMed ID: 20802540
    [TBL] [Abstract][Full Text] [Related]  

  • 44. High-throughput sorting of mosquito larvae for laboratory studies and for future vector control interventions.
    Marois E; Scali C; Soichot J; Kappler C; Levashina EA; Catteruccia F
    Malar J; 2012 Aug; 11():302. PubMed ID: 22929810
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Conditional expression in the malaria mosquito Anopheles stephensi with Tet-On and Tet-Off systems.
    Lycett GJ; Kafatos FC; Loukeris TG
    Genetics; 2004 Aug; 167(4):1781-90. PubMed ID: 15342516
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Malaria. A mosquito transformed.
    Coates CJ
    Nature; 2000 Jun; 405(6789):900-1. PubMed ID: 10879519
    [No Abstract]   [Full Text] [Related]  

  • 47. Developing transgenic Anopheles mosquitoes for the sterile insect technique.
    Nolan T; Papathanos P; Windbichler N; Magnusson K; Benton J; Catteruccia F; Crisanti A
    Genetica; 2011 Jan; 139(1):33-9. PubMed ID: 20821345
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Interrupting malaria transmission by genetic manipulation of anopheline mosquitoes.
    Jacobs-Lorena M
    J Vector Borne Dis; 2003; 40(3-4):73-7. PubMed ID: 15119075
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The vasa regulatory region mediates germline expression and maternal transmission of proteins in the malaria mosquito Anopheles gambiae: a versatile tool for genetic control strategies.
    Papathanos PA; Windbichler N; Menichelli M; Burt A; Crisanti A
    BMC Mol Biol; 2009 Jul; 10():65. PubMed ID: 19573226
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Robust salivary gland-specific transgene expression in Anopheles stephensi mosquito.
    Yoshida S; Watanabe H
    Insect Mol Biol; 2006 Aug; 15(4):403-10. PubMed ID: 16907827
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Changes in the microbiota cause genetically modified
    Pike A; Dong Y; Dizaji NB; Gacita A; Mongodin EF; Dimopoulos G
    Science; 2017 Sep; 357(6358):1396-1399. PubMed ID: 28963254
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Pure early zygotic genes in the Asian malaria mosquito Anopheles stephensi.
    Wu Y; Hu W; Biedler JK; Chen XG; Tu ZJ
    Parasit Vectors; 2018 Dec; 11(Suppl 2):652. PubMed ID: 30583723
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Bacteria of the genus Asaia: a potential paratransgenic weapon against malaria.
    Favia G; Ricci I; Marzorati M; Negri I; Alma A; Sacchi L; Bandi C; Daffonchio D
    Adv Exp Med Biol; 2008; 627():49-59. PubMed ID: 18510013
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Sex separation strategies: past experience and new approaches.
    Papathanos PA; Bossin HC; Benedict MQ; Catteruccia F; Malcolm CA; Alphey L; Crisanti A
    Malar J; 2009 Nov; 8 Suppl 2(Suppl 2):S5. PubMed ID: 19917075
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Mosquito-Borne Diseases and Omics: Tissue-Restricted Expression and Alternative Splicing Revealed by Transcriptome Profiling of Anopheles stephensi.
    Sreenivasamurthy SK; Madugundu AK; Patil AH; Dey G; Mohanty AK; Kumar M; Patel K; Wang C; Kumar A; Pandey A; Prasad TSK
    OMICS; 2017 Aug; 21(8):488-497. PubMed ID: 28708456
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Current vector control challenges in the fight against malaria.
    Benelli G; Beier JC
    Acta Trop; 2017 Oct; 174():91-96. PubMed ID: 28684267
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Life-table analysis of Anopheles malaria vectors: generational mortality as tool in mosquito vector abundance and control studies.
    Okogun GR
    J Vector Borne Dis; 2005 Jun; 42(2):45-53. PubMed ID: 16161700
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Downregulation of female doublesex expression by oral-mediated RNA interference reduces number and fitness of Anopheles gambiae adult females.
    Taracena ML; Hunt CM; Benedict MQ; Pennington PM; Dotson EM
    Parasit Vectors; 2019 Apr; 12(1):170. PubMed ID: 30992032
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Impact of mating behaviour on the success of malaria control through a single inundative release of transgenic mosquitoes.
    Boëte C; Agusto FB; Reeves RG
    J Theor Biol; 2014 Apr; 347():33-43. PubMed ID: 24440174
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Contrasted Fitness Costs of Docking and Antibacterial Constructs in the EE and EVida3 Strains Validates Two-Phase Anopheles gambiae Genetic Transformation System.
    Paton D; Underhill A; Meredith J; Eggleston P; Tripet F
    PLoS One; 2013; 8(6):e67364. PubMed ID: 23840679
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.