These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 16244884)

  • 1. Genetic transformation of cowpea (Vigna unguiculata L.) and stable transmission of the transgenes to progeny.
    Popelka JC; Gollasch S; Moore A; Molvig L; Higgins TJ
    Plant Cell Rep; 2006 Apr; 25(4):304-12. PubMed ID: 16244884
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transgenic cowpea (Vigna unguiculata) seeds expressing a bean alpha-amylase inhibitor 1 confer resistance to storage pests, bruchid beetles.
    Solleti SK; Bakshi S; Purkayastha J; Panda SK; Sahoo L
    Plant Cell Rep; 2008 Dec; 27(12):1841-50. PubMed ID: 18784925
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biolistic-mediated genetic transformation of cowpea (Vigna unguiculata) and stable Mendelian inheritance of transgenes.
    Ivo NL; Nascimento CP; Vieira LS; Campos FA; Aragão FJ
    Plant Cell Rep; 2008 Sep; 27(9):1475-83. PubMed ID: 18587583
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cowpea [Vigna unguiculata (L.) Walp].
    Behura R; Kumar S; Saha B; Panda MK; Dey M; Sadhukhan A; Mishra S; Alam S; Sahoo DP; Sugla T; Sahoo L
    Methods Mol Biol; 2015; 1223():255-64. PubMed ID: 25300846
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Developing a rapid and highly efficient cowpea regeneration, transformation and genome editing system using embryonic axis explants.
    Che P; Chang S; Simon MK; Zhang Z; Shaharyar A; Ourada J; O'Neill D; Torres-Mendoza M; Guo Y; Marasigan KM; Vielle-Calzada JP; Ozias-Akins P; Albertsen MC; Jones TJ
    Plant J; 2021 May; 106(3):817-830. PubMed ID: 33595147
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Successful recovery of transgenic cowpea (Vigna unguiculata) using the 6-phosphomannose isomerase gene as the selectable marker.
    Bakshi S; Saha B; Roy NK; Mishra S; Panda SK; Sahoo L
    Plant Cell Rep; 2012 Jun; 31(6):1093-103. PubMed ID: 22327900
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genetic engineering in Cowpea (Vigna unguiculata): history, status and prospects.
    Citadin CT; Ibrahim AB; Aragão FJ
    GM Crops; 2011; 2(3):144-9. PubMed ID: 22179190
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Agrobacterium mediated transformation of Vigna sesquipedalis Koern (asparagus bean).
    Ignacimuthu S
    Indian J Exp Biol; 2000 May; 38(5):493-8. PubMed ID: 11272416
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stable genetic transformation of Vigna mungo L. Hepper via Agrobacterium tumefaciens.
    Saini R; Sonia ; Jaiwal PK
    Plant Cell Rep; 2003 Jun; 21(9):851-9. PubMed ID: 12789502
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An Improved Transformation System for Cowpea (
    Bett B; Gollasch S; Moore A; Harding R; Higgins TJV
    Front Plant Sci; 2019; 10():219. PubMed ID: 30873198
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Agrobacterium tumefaciens mediated transfer of Phaseolus vulgaris alpha-amylase inhibitor-1 gene into mungbean Vigna radiata (L.) Wilczek using bar as selectable marker.
    Sonia ; Saini R; Singh RP; Jaiwal PK
    Plant Cell Rep; 2007 Feb; 26(2):187-98. PubMed ID: 16983450
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genetic transformation of peanut (Arachis hypogaea L.) using cotyledonary node as explant and a promoterless gus::nptII fusion gene based vector.
    Anuradha TS; Jami SK; Datla RS; Kirti PB
    J Biosci; 2006 Jun; 31(2):235-46. PubMed ID: 16809856
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transformation of a recalcitrant grain legume, Vigna mungo L. Hepper, using Agrobacterium tumefaciens-mediated gene transfer to shoot apical meristem cultures.
    Saini R; Jaiwal PK
    Plant Cell Rep; 2005 Jun; 24(3):164-71. PubMed ID: 15815929
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Efficacy of a cry1Ab Gene for Control of Maruca vitrata (Lepidoptera: Crambidae) in Cowpea (Fabales: Fabaceae).
    Addae PC; Ishiyaku MF; Tignegre JB; Ba MN; Bationo JB; Atokple IDK; Abudulai M; Dabiré-Binso CL; Traore F; Saba M; Umar ML; Adazebra GA; Onyekachi FN; Nemeth MA; Huesing JE; Beach LR; Higgins TJV; Hellmich RL; Pittendrigh BR
    J Econ Entomol; 2020 Apr; 113(2):974-979. PubMed ID: 31967641
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Production of intraspecific F1 hybrids between wild and cultivated accessions of cowpea (Vigna unguiculata (L.) walp.) using conventional methods.
    Lelou B; Van Damme P
    Commun Agric Appl Biol Sci; 2006; 71(4):57-75. PubMed ID: 17612353
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fertile transgenic pearl millet [ Pennisetum glaucum (L.) R. Br.] plants recovered through microprojectile bombardment and phosphinothricin selection of apical meristem-, inflorescence-, and immature embryo-derived embryogenic tissues.
    Goldman JJ; Hanna WW; Fleming G; Ozias-Akins P
    Plant Cell Rep; 2003 Jun; 21(10):999-1009. PubMed ID: 12835911
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Additional virulence genes in conjunction with efficient selection scheme, and compatible culture regime enhance recovery of stable transgenic plants in cowpea via Agrobacterium tumefaciens-mediated transformation.
    Solleti SK; Bakshi S; Sahoo L
    J Biotechnol; 2008 May; 135(1):97-104. PubMed ID: 18394740
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Field performance of transgenic sugarcane produced using Agrobacterium and biolistics methods.
    Joyce P; Hermann S; O'Connell A; Dinh Q; Shumbe L; Lakshmanan P
    Plant Biotechnol J; 2014 May; 12(4):411-24. PubMed ID: 24330327
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular genetics of race-specific resistance of cowpea to Striga gesnerioides (Willd.).
    Li J; Lis KE; Timko MP
    Pest Manag Sci; 2009 May; 65(5):520-7. PubMed ID: 19222045
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cowpea-Meloidogyne incognita interaction: Root proteomic analysis during early stages of nematode infection.
    Villeth GR; Carmo LS; Silva LP; Fontes W; Grynberg P; Saraiva M; Brasileiro AC; Carneiro RM; Oliveira JT; Grossi-de-Sá MF; Mehta A
    Proteomics; 2015 May; 15(10):1746-59. PubMed ID: 25736976
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.