These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 16245012)

  • 1. The evolution of microbial phosphonate degradative pathways.
    Huang J; Su Z; Xu Y
    J Mol Evol; 2005 Nov; 61(5):682-90. PubMed ID: 16245012
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evidence for two phosphonate degradative pathways in Enterobacter aerogenes.
    Lee KS; Metcalf WW; Wanner BL
    J Bacteriol; 1992 Apr; 174(8):2501-10. PubMed ID: 1556070
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular genetics of carbon-phosphorus bond cleavage in bacteria.
    Wanner BL
    Biodegradation; 1994 Dec; 5(3-4):175-84. PubMed ID: 7765831
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phosphate-independent expression of the carbon-phosphorus lyase activity of Escherichia coli.
    Yakovleva GM; Kim SK; Wanner BL
    Appl Microbiol Biotechnol; 1998 May; 49(5):573-8. PubMed ID: 9650256
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Abc of Phosphonate Breakdown: A Mechanism for Bacterial Survival.
    Manav MC; Sofos N; Hove-Jensen B; Brodersen DE
    Bioessays; 2018 Nov; 40(11):e1800091. PubMed ID: 30198068
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The enzymatic conversion of phosphonates to phosphate by bacteria.
    Kamat SS; Raushel FM
    Curr Opin Chem Biol; 2013 Aug; 17(4):589-96. PubMed ID: 23830682
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Five phosphonate operon gene products as components of a multi-subunit complex of the carbon-phosphorus lyase pathway.
    Jochimsen B; Lolle S; McSorley FR; Nabi M; Stougaard J; Zechel DL; Hove-Jensen B
    Proc Natl Acad Sci U S A; 2011 Jul; 108(28):11393-8. PubMed ID: 21705661
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular genetic studies of a 10.9-kb operon in Escherichia coli for phosphonate uptake and biodegradation.
    Wanner BL; Metcalf WW
    FEMS Microbiol Lett; 1992 Dec; 100(1-3):133-9. PubMed ID: 1335942
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Carbon-Phosphorus Lyase-the State of the Art.
    Stosiek N; Talma M; Klimek-Ochab M
    Appl Biochem Biotechnol; 2020 Apr; 190(4):1525-1552. PubMed ID: 31792787
    [TBL] [Abstract][Full Text] [Related]  

  • 10. New ways to break an old bond: the bacterial carbon-phosphorus hydrolases and their role in biogeochemical phosphorus cycling.
    Quinn JP; Kulakova AN; Cooley NA; McGrath JW
    Environ Microbiol; 2007 Oct; 9(10):2392-400. PubMed ID: 17803765
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Widespread known and novel phosphonate utilization pathways in marine bacteria revealed by functional screening and metagenomic analyses.
    Martinez A; Tyson GW; Delong EF
    Environ Microbiol; 2010 Jan; 12(1):222-38. PubMed ID: 19788654
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Alternative pathways for phosphonate metabolism in thermophilic cyanobacteria from microbial mats.
    Gomez-Garcia MR; Davison M; Blain-Hartnung M; Grossman AR; Bhaya D
    ISME J; 2011 Jan; 5(1):141-9. PubMed ID: 20631809
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Accumulation of intermediates of the carbon-phosphorus lyase pathway for phosphonate degradation in phn mutants of Escherichia coli.
    Hove-Jensen B; Rosenkrantz TJ; Zechel DL; Willemoës M
    J Bacteriol; 2010 Jan; 192(1):370-4. PubMed ID: 19854894
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The chemolithoautotroph Acidithiobacillus ferrooxidans can survive under phosphate-limiting conditions by expressing a C-P lyase operon that allows it to grow on phosphonates.
    Vera M; Pagliai F; Guiliani N; Jerez CA
    Appl Environ Microbiol; 2008 Mar; 74(6):1829-35. PubMed ID: 18203861
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genes for phosphonate biodegradation in Escherichia coli.
    Wanner BL
    SAAS Bull Biochem Biotechnol; 1992 Jan; 5():1-6. PubMed ID: 1368181
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phosphonate utilization by bacterial cultures and enrichments from environmental samples.
    Schowanek D; Verstraete W
    Appl Environ Microbiol; 1990 Apr; 56(4):895-903. PubMed ID: 2339877
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Global and seasonal variation of marine phosphonate metabolism.
    Lockwood S; Greening C; Baltar F; Morales SE
    ISME J; 2022 Sep; 16(9):2198-2212. PubMed ID: 35739297
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phosphonates and their degradation by microorganisms.
    Kononova SV; Nesmeyanova MA
    Biochemistry (Mosc); 2002 Feb; 67(2):184-95. PubMed ID: 11952414
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Intermediates in the transformation of phosphonates to phosphate by bacteria.
    Kamat SS; Williams HJ; Raushel FM
    Nature; 2011 Nov; 480(7378):570-3. PubMed ID: 22089136
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phosphate-limited ocean regions select for bacterial populations enriched in the carbon-phosphorus lyase pathway for phosphonate degradation.
    Sosa OA; Repeta DJ; DeLong EF; Ashkezari MD; Karl DM
    Environ Microbiol; 2019 Jul; 21(7):2402-2414. PubMed ID: 30972938
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.