These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

82 related articles for article (PubMed ID: 16245212)

  • 1. Ultrastructural study of cerebellar dentate nucleus astrocytes in chronic experimental model with valproate.
    Sobaniec-Łotowska ME; Lotowska JM
    Folia Neuropathol; 2005; 43(3):166-71. PubMed ID: 16245212
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ultrastructure of astrocytes in the cortex of the hippocampal gyrus and in the neocortex of the temporal lobe in experimental valproate encephalopathy and after valproate withdrawal.
    Sobaniec-Lotowska ME
    Int J Exp Pathol; 2003 Jun; 84(3):115-25. PubMed ID: 12974941
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Morphological features of encephalopathy after chronic administration of the antiepileptic drug valproate to rats. A transmission electron microscopic study of capillaries in the cerebellar cortex.
    Sobaniec-Lotowska ME; Sobaniec W
    Exp Toxicol Pathol; 1996 Jan; 48(1):65-75. PubMed ID: 8919272
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ultrastructure of synaptic junctions in the cerebellar cortex in experimental valproate encephalopathy and after terminating chronic application of the antiepileptic.
    Sobaniec-Lotowska ME
    Folia Neuropathol; 2002; 40(2):87-96. PubMed ID: 12230260
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ultrastructure of Purkinje cell perikarya and their dendritic processes in the rat cerebellar cortex in experimental encephalopathy induced by chronic application of valproate.
    Sobaniec-Lotowska ME
    Int J Exp Pathol; 2001 Dec; 82(6):337-48. PubMed ID: 11846840
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ultrastructural features of astrocytes in the cortex of the hippocampal gyrus and in the neocortex of the temporal lobe in an experimental model of febrile seizures and with the use of topiramate.
    Łotowska JM; Sobaniec-Łotowska ME; Sobaniec W
    Folia Neuropathol; 2009; 47(3):268-77. PubMed ID: 19813147
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ultrastructural study of hippocampal cortex neurons in an experimental model of valproate encephalopathy.
    Sendrowski K; Sobaniec W; Sobaniec P; Sobaniec-Lotowska ME
    Folia Histochem Cytobiol; 2013; 51(1):31-7. PubMed ID: 23690215
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Expression of blood-brain barrier characteristics following neuronal loss and astroglial damage after administration of anti-Thy-1 immunotoxin.
    Krum JM; Kenyon KL; Rosenstein JM
    Exp Neurol; 1997 Jul; 146(1):33-45. PubMed ID: 9225736
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A transmission electron microscopic study of microglia/macrophages in the hippocampal cortex and neocortex following chronic exposure to valproate.
    Sobaniec-Lotowska ME
    Int J Exp Pathol; 2005 Apr; 86(2):91-6. PubMed ID: 15810980
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Morphometric analysis of the cerebellar cortex capillaries in the course of experimental valproate encephalopathy and after chronic exposure to sodium valproate using transmission electron microscopy.
    Sobaniec-Lotowska M; Sobaniec W; Augustynowicz A
    Folia Neuropathol; 2001; 39(4):277-80. PubMed ID: 11928900
    [TBL] [Abstract][Full Text] [Related]  

  • 11. "Dark" (compacted) neurons may not die through the necrotic pathway.
    Gallyas F; Csordás A; Schwarcz A; Mázló M
    Exp Brain Res; 2005 Jan; 160(4):473-86. PubMed ID: 15480602
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A study on blood-brain barrier ultrastructural changes induced by cerebral hypoperfusion of different stages.
    Wu JS; Chen XC; Chen H; Shi YQ
    Neurol Res; 2006 Jan; 28(1):50-8. PubMed ID: 16464363
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of long-term administration of the antiepileptic drug--sodium valproate upon the ultrastructure of hepatocytes in rats.
    Sobaniec-Lotowska ME
    Exp Toxicol Pathol; 1997 Aug; 49(3-4):225-32. PubMed ID: 9314057
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Protective role of melatonin in domoic acid-induced neuronal damage in the hippocampus of adult rats.
    Ananth C; Gopalakrishnakone P; Kaur C
    Hippocampus; 2003; 13(3):375-87. PubMed ID: 12722978
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Radial astrocytes: toxic effects induced by antiepileptic drug in the developing rat hippocampus in vitro.
    Fennrich S; Ray D; Nau H; Schlosshauer B
    Eur J Cell Biol; 1998 Oct; 77(2):142-50. PubMed ID: 9840464
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ultrastructure of the blood-brain barrier of the gyrus hippocampal cortex in an experimental model of febrile seizures and with the use of a new generation antiepileptic drug--topiramate.
    Łotowska JM; Sobaniec-Łotowska ME; Sendrowski K; Sobaniec W; Artemowicz B
    Folia Neuropathol; 2008; 46(1):57-68. PubMed ID: 18368628
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Electron microscopic study on the changes of the cerebellar hemisphere cortex and lateral nucleus (dentate nucleus) of adult rats after electric convulsions--changes of astrocytes and purkinje cell perikarya and distal parts of their axons (author's transl)].
    Suzuki H
    Seishin Shinkeigaku Zasshi; 1978 Mar; 80(3):105-19. PubMed ID: 662974
    [No Abstract]   [Full Text] [Related]  

  • 18. Focal astrocyte loss is followed by microvascular damage, with subsequent repair of the blood-brain barrier in the apparent absence of direct astrocytic contact.
    Willis CL; Nolan CC; Reith SN; Lister T; Prior MJ; Guerin CJ; Mavroudis G; Ray DE
    Glia; 2004 Mar; 45(4):325-37. PubMed ID: 14966864
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Differential regulation of FGF-2 in neurons and reactive astrocytes of axotomized rat hypoglossal nucleus. A possible therapeutic target for neuroprotection in peripheral nerve pathology.
    de Oliveira GP; Duobles T; Castelucci P; Chadi G
    Acta Histochem; 2010 Nov; 112(6):604-17. PubMed ID: 19665173
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Acute administration of 3,4-methylenedioxymethamphetamine induces profound hyperthermia, blood-brain barrier disruption, brain edema formation, and cell injury.
    Sharma HS; Ali SF
    Ann N Y Acad Sci; 2008 Oct; 1139():242-58. PubMed ID: 18991870
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.