These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 16245338)

  • 1. Notch1 signals through Jagged2 to regulate apoptosis in the apical ectodermal ridge of the developing limb bud.
    Francis JC; Radtke F; Logan MP
    Dev Dyn; 2005 Dec; 234(4):1006-15. PubMed ID: 16245338
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Notch1 and 2 cooperate in limb ectoderm to receive an early Jagged2 signal regulating interdigital apoptosis.
    Pan Y; Liu Z; Shen J; Kopan R
    Dev Biol; 2005 Oct; 286(2):472-82. PubMed ID: 16169548
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Expression patterns of Notch1, Serrate1, Serrate2 and Delta1 in tissues of the developing chick limb.
    Vargesson N; Patel K; Lewis J; Tickle C
    Mech Dev; 1998 Oct; 77(2):197-9. PubMed ID: 9831652
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Smad1/Smad5 signaling in limb ectoderm functions redundantly and is required for interdigital programmed cell death.
    Wong YL; Behringer RR; Kwan KM
    Dev Biol; 2012 Mar; 363(1):247-57. PubMed ID: 22240098
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of a novel ectodermal signaling center regulating Tbx2 and Shh in the vertebrate limb.
    Nissim S; Allard P; Bandyopadhyay A; Harfe BD; Tabin CJ
    Dev Biol; 2007 Apr; 304(1):9-21. PubMed ID: 17300775
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fgf8 signalling from the AER is essential for normal limb development.
    Lewandoski M; Sun X; Martin GR
    Nat Genet; 2000 Dec; 26(4):460-3. PubMed ID: 11101846
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mouse Twist is required for fibroblast growth factor-mediated epithelial-mesenchymal signalling and cell survival during limb morphogenesis.
    Zuniga A; Quillet R; Perrin-Schmitt F; Zeller R
    Mech Dev; 2002 Jun; 114(1-2):51-9. PubMed ID: 12175489
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The roles of Fgf4 and Fgf8 in limb bud initiation and outgrowth.
    Boulet AM; Moon AM; Arenkiel BR; Capecchi MR
    Dev Biol; 2004 Sep; 273(2):361-72. PubMed ID: 15328019
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Manifestation of the limb prepattern: limb development in the absence of sonic hedgehog function.
    Chiang C; Litingtung Y; Harris MP; Simandl BK; Li Y; Beachy PA; Fallon JF
    Dev Biol; 2001 Aug; 236(2):421-35. PubMed ID: 11476582
    [TBL] [Abstract][Full Text] [Related]  

  • 10. FGF10 can induce Fgf8 expression concomitantly with En1 and R-fng expression in chick limb ectoderm, independent of its dorsoventral specification.
    Ohuchi H; Nakagawa T; Itoh N; Noji S
    Dev Growth Differ; 1999 Dec; 41(6):665-73. PubMed ID: 10646796
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fgf-signaling is compartmentalized within the mesenchyme and controls proliferation during salamander limb development.
    Purushothaman S; Elewa A; Seifert AW
    Elife; 2019 Sep; 8():. PubMed ID: 31538936
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A role for the mesenchymal T-box gene Brachyury in AER formation during limb development.
    Liu C; Nakamura E; Knezevic V; Hunter S; Thompson K; Mackem S
    Development; 2003 Apr; 130(7):1327-37. PubMed ID: 12588849
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Increasing Fgf4 expression in the mouse limb bud causes polysyndactyly and rescues the skeletal defects that result from loss of Fgf8 function.
    Lu P; Minowada G; Martin GR
    Development; 2006 Jan; 133(1):33-42. PubMed ID: 16308330
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Wnt10a is involved in AER formation during chick limb development.
    Narita T; Sasaoka S; Udagawa K; Ohyama T; Wada N; Nishimatsu S; Takada S; Nohno T
    Dev Dyn; 2005 Jun; 233(2):282-7. PubMed ID: 15789446
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Roles of transforming growth factor-alpha and epidermal growth factor in chick limb development.
    Dealy CN; Scranton V; Cheng HC
    Dev Biol; 1998 Oct; 202(1):43-55. PubMed ID: 9758702
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functions of FGF signalling from the apical ectodermal ridge in limb development.
    Sun X; Mariani FV; Martin GR
    Nature; 2002 Aug; 418(6897):501-8. PubMed ID: 12152071
    [TBL] [Abstract][Full Text] [Related]  

  • 17. JAGGED2: a putative Notch ligand expressed in the apical ectodermal ridge and in sites of epithelial-mesenchymal interactions.
    Valsecchi C; Ghezzi C; Ballabio A; Rugarli EI
    Mech Dev; 1997 Dec; 69(1-2):203-7. PubMed ID: 9486542
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The apical ectodermal ridge is a timer for generating distal limb progenitors.
    Lu P; Yu Y; Perdue Y; Werb Z
    Development; 2008 Apr; 135(8):1395-405. PubMed ID: 18359901
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of a spatially specific enhancer element in the chicken Msx-2 gene that regulates its expression in the apical ectodermal ridge of the developing limb buds of transgenic mice.
    Sumoy L; Wang CK; Lichtler AC; Pierro LJ; Kosher RA; Upholt WB
    Dev Biol; 1995 Jul; 170(1):230-42. PubMed ID: 7601312
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Two lineage boundaries coordinate vertebrate apical ectodermal ridge formation.
    Kimmel RA; Turnbull DH; Blanquet V; Wurst W; Loomis CA; Joyner AL
    Genes Dev; 2000 Jun; 14(11):1377-89. PubMed ID: 10837030
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.