BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 16245689)

  • 1. [Theoretical conformational analysis in the determination of productive conformations of substrates for acetylcholinesterase and butyrylcholinesterase].
    Belinskaia DA; Shestakova NN
    Bioorg Khim; 2005; 31(5):466-73. PubMed ID: 16245689
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Determination of productive conformations of acetylcholinesterase substrates using theoretical conformational analysis].
    Shestakova NN; Rozengart EV; Khovanskikh AE; Zhorov BS; Govyrin VA
    Bioorg Khim; 1989 Mar; 15(3):335-44. PubMed ID: 2742614
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modeling effects of oxyanion hole on the ester hydrolysis catalyzed by human cholinesterases.
    Gao D; Zhan CG
    J Phys Chem B; 2005 Dec; 109(48):23070-6. PubMed ID: 16854005
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reaction pathway and free energy profile for butyrylcholinesterase-catalyzed hydrolysis of acetylcholine.
    Chen X; Fang L; Liu J; Zhan CG
    J Phys Chem B; 2011 Feb; 115(5):1315-22. PubMed ID: 21175195
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Active site gating and substrate specificity of butyrylcholinesterase and acetylcholinesterase: insights from molecular dynamics simulations.
    Fang L; Pan Y; Muzyka JL; Zhan CG
    J Phys Chem B; 2011 Jul; 115(27):8797-805. PubMed ID: 21682268
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Productive substrate sorption in acetylcholinesterase and butyrylcholinesterase active sites according to theoretical conformational analysis.
    Belinskaya DA; Shestakova NN
    Dokl Biochem Biophys; 2004; 396():146-50. PubMed ID: 15378912
    [No Abstract]   [Full Text] [Related]  

  • 7. Butyrylcholinesterase and the control of synaptic responses in acetylcholinesterase knockout mice.
    Girard E; Bernard V; Minic J; Chatonnet A; Krejci E; Molgó J
    Life Sci; 2007 May; 80(24-25):2380-5. PubMed ID: 17467011
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An inhibitor-free assay of acetylcholinesterase and butyrylcholinesterase in the cerebrospinal fluid.
    Kluge HH; Kluge WH; Hartmann W
    Clin Chim Acta; 1999 Apr; 282(1-2):135-45. PubMed ID: 10340441
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Crystal structure of human butyrylcholinesterase and of its complexes with substrate and products.
    Nicolet Y; Lockridge O; Masson P; Fontecilla-Camps JC; Nachon F
    J Biol Chem; 2003 Oct; 278(42):41141-7. PubMed ID: 12869558
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Conformational differences in the sorption of choline ligands at the active site of acetylcholinesterase].
    Shestakova NN; Rozengart EV
    Bioorg Khim; 1995 May; 21(5):323-9. PubMed ID: 7661856
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Acetylcholinesterase active centre and gorge conformations analysed by combinatorial mutations and enantiomeric phosphonates.
    Kovarik Z; Radić Z; Berman HA; Simeon-Rudolf V; Reiner E; Taylor P
    Biochem J; 2003 Jul; 373(Pt 1):33-40. PubMed ID: 12665427
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Time-course of human cholinesterases-catalyzed competing substrate kinetics.
    Mukhametgalieva AR; Aglyamova AR; Lushchekina SV; Goličnik M; Masson P
    Chem Biol Interact; 2019 Sep; 310():108702. PubMed ID: 31247192
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hysteresis of butyrylcholinesterase in the approach to steady-state kinetics.
    Masson P; Schopfer LM; Froment MT; Debouzy JC; Nachon F; Gillon E; Lockridge O; Hrabovska A; Goldstein BN
    Chem Biol Interact; 2005 Dec; 157-158():143-52. PubMed ID: 16256969
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Boundaries of the butyrylcholinesterase anion site from data of a conformational analysis of substrates].
    Rozengart EV; Zhorov BS
    Zh Evol Biokhim Fiziol; 1989; 25(2):189-94. PubMed ID: 2750365
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of active sites of butyrylcholinesterase and acetylcholinesterase based on inhibition by geometric isomers of benzene-di-N-substituted carbamates.
    Chiou SY; Huang CF; Hwang MT; Lin G
    J Biochem Mol Toxicol; 2009; 23(5):303-8. PubMed ID: 19827033
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Asymmetric fluorogenic organophosphates for the development of active organophosphate hydrolases with reversed stereoselectivity.
    Amitai G; Adani R; Yacov G; Yishay S; Teitlboim S; Tveria L; Limanovich O; Kushnir M; Meshulam H
    Toxicology; 2007 Apr; 233(1-3):187-98. PubMed ID: 17129656
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rapid and sensitive detection of the inhibitive activities of acetyl- and butyryl-cholinesterases inhibitors by UPLC-ESI-MS/MS.
    Liu W; Yang Y; Cheng X; Gong C; Li S; He D; Yang L; Wang Z; Wang C
    J Pharm Biomed Anal; 2014 Jun; 94():215-20. PubMed ID: 24631841
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Excavations into the active-site gorge of cholinesterases.
    Soreq H; Gnatt A; Loewenstein Y; Neville LF
    Trends Biochem Sci; 1992 Sep; 17(9):353-8. PubMed ID: 1412713
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Excessive hippocampal acetylcholine levels in acetylcholinesterase-deficient mice are moderated by butyrylcholinesterase activity.
    Hartmann J; Kiewert C; Duysen EG; Lockridge O; Greig NH; Klein J
    J Neurochem; 2007 Mar; 100(5):1421-9. PubMed ID: 17212694
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enzyme-kinetic investigation of different sarin analogues reacting with human acetylcholinesterase and butyrylcholinesterase.
    Bartling A; Worek F; Szinicz L; Thiermann H
    Toxicology; 2007 Apr; 233(1-3):166-72. PubMed ID: 16904809
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.