These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
118 related articles for article (PubMed ID: 16245843)
1. Secretion of bacterial xenobiotic-degrading enzymes from transgenic plants by an apoplastic expressional system: an applicability for phytoremediation. Uchida E; Ouchi T; Suzuki Y; Yoshida T; Habe H; Yamaguchi I; Omori T; Nojiri H Environ Sci Technol; 2005 Oct; 39(19):7671-7. PubMed ID: 16245843 [TBL] [Abstract][Full Text] [Related]
2. Characterization of transgenic tobacco plants containing bacterial bphC gene and study of their phytoremediation ability. Viktorovtá J; Novakova M; Trbolova L; Vrchotova B; Lovecka P; Mackova M; Macek T Int J Phytoremediation; 2014; 16(7-12):937-46. PubMed ID: 24933894 [TBL] [Abstract][Full Text] [Related]
3. Transgenic plants for enhanced biodegradation and phytoremediation of organic xenobiotics. Abhilash PC; Jamil S; Singh N Biotechnol Adv; 2009; 27(4):474-88. PubMed ID: 19371778 [TBL] [Abstract][Full Text] [Related]
4. Optimization of Acidothermus cellulolyticus endoglucanase (E1) production in transgenic tobacco plants by transcriptional, post-transcription and post-translational modification. Dai Z; Hooker BS; Quesenberry RD; Thomas SR Transgenic Res; 2005 Oct; 14(5):627-43. PubMed ID: 16245154 [TBL] [Abstract][Full Text] [Related]
5. Biodegradation of explosives by transgenic plants expressing pentaerythritol tetranitrate reductase. French CE; Rosser SJ; Davies GJ; Nicklin S; Bruce NC Nat Biotechnol; 1999 May; 17(5):491-4. PubMed ID: 10331811 [TBL] [Abstract][Full Text] [Related]
6. Transgenic rice plants expressing human p450 genes involved in xenobiotic metabolism for phytoremediation. Kawahigashi H; Hirose S; Ohkawa H; Ohkawa Y J Mol Microbiol Biotechnol; 2008; 15(2-3):212-9. PubMed ID: 18685273 [TBL] [Abstract][Full Text] [Related]
7. Phytoremediation of arsenic from the contaminated soil using transgenic tobacco plants expressing ACR2 gene of Arabidopsis thaliana. Nahar N; Rahman A; Nawani NN; Ghosh S; Mandal A J Plant Physiol; 2017 Nov; 218():121-126. PubMed ID: 28818758 [TBL] [Abstract][Full Text] [Related]
8. Cloning the bacterial bphC gene into Nicotiana tabacum to improve the efficiency of phytoremediation of polychlorinated biphenyls. Novakova M; Mackova M; Antosova Z; Viktorova J; Szekeres M; Demnerova K; Macek T Bioeng Bugs; 2010; 1(6):419-23. PubMed ID: 21468210 [TBL] [Abstract][Full Text] [Related]
9. The key role of chlorocatechol 1,2-dioxygenase in phytoremoval and degradation of catechol by transgenic Arabidopsis. Liao Y; Zhou X; Yu J; Cao Y; Li X; Kuai B Plant Physiol; 2006 Oct; 142(2):620-8. PubMed ID: 16935988 [TBL] [Abstract][Full Text] [Related]
10. Apoplastic and cytoplasmic location of harpin protein Hpa1Xoo plays different roles in H2O2 generation and pathogen resistance in Arabidopsis. Sang S; Li X; Gao R; You Z; Lü B; Liu P; Ma Q; Dong H Plant Mol Biol; 2012 Jul; 79(4-5):375-91. PubMed ID: 22581008 [TBL] [Abstract][Full Text] [Related]
11. An N-terminal peptide extension results in efficient expression, but not secretion, of a synthetic horseradish peroxidase gene in transgenic tobacco. Kis M; Burbridge E; Brock IW; Heggie L; Dix PJ; Kavanagh TA Ann Bot; 2004 Mar; 93(3):303-10. PubMed ID: 14749254 [TBL] [Abstract][Full Text] [Related]
12. Transgenic tobacco and Arabidopsis plants expressing the two multifunctional sorghum cytochrome P450 enzymes, CYP79A1 and CYP71E1, are cyanogenic and accumulate metabolites derived from intermediates in Dhurrin biosynthesis. Bak S; Olsen CE; Halkier BA; Møller BL Plant Physiol; 2000 Aug; 123(4):1437-48. PubMed ID: 10938360 [TBL] [Abstract][Full Text] [Related]
13. Autohydrolysis of plant xylans by apoplastic expression of thermophilic bacterial endo-xylanases. Borkhardt B; Harholt J; Ulvskov P; Ahring BK; Jørgensen B; Brinch-Pedersen H Plant Biotechnol J; 2010 Apr; 8(3):363-74. PubMed ID: 20384855 [TBL] [Abstract][Full Text] [Related]
14. Suppressed expression of the apoplastic ascorbate oxidase gene increases salt tolerance in tobacco and Arabidopsis plants. Yamamoto A; Bhuiyan MN; Waditee R; Tanaka Y; Esaka M; Oba K; Jagendorf AT; Takabe T J Exp Bot; 2005 Jul; 56(417):1785-96. PubMed ID: 15883131 [TBL] [Abstract][Full Text] [Related]
15. Engineering a catabolic pathway in plants for the degradation of 1,2-dichloroethane. Mena-Benitez GL; Gandia-Herrero F; Graham S; Larson TR; McQueen-Mason SJ; French CE; Rylott EL; Bruce NC Plant Physiol; 2008 Jul; 147(3):1192-8. PubMed ID: 18467461 [TBL] [Abstract][Full Text] [Related]
16. Transgenic plants in phytoremediation: recent advances and new possibilities. Cherian S; Oliveira MM Environ Sci Technol; 2005 Dec; 39(24):9377-90. PubMed ID: 16475312 [TBL] [Abstract][Full Text] [Related]
17. Transgenic tobacco plants expressing a fungal laccase are able to reduce phenol content from olive mill wastewaters. Chiaiese P; Palomba F; Galante C; Esposito S; De Biasi MG; Filippone E Int J Phytoremediation; 2012 Oct; 14(9):835-44. PubMed ID: 22908648 [TBL] [Abstract][Full Text] [Related]
18. Generation of transgenic plants expressing antibodies to the environmental pollutant microcystin-LR. Drake PM; Barbi T; Drever MR; van Dolleweerd CJ; Porter AJ; Ma JK FASEB J; 2010 Mar; 24(3):882-90. PubMed ID: 19841035 [TBL] [Abstract][Full Text] [Related]
19. Expression of bacterial biphenyl-chlorobiphenyl dioxygenase genes in tobacco plants. Mohammadi M; Chalavi V; Novakova-Sura M; Laliberté JF; Sylvestre M Biotechnol Bioeng; 2007 Jun; 97(3):496-505. PubMed ID: 17006888 [TBL] [Abstract][Full Text] [Related]
20. Enhanced tolerance to drought stress in transgenic tobacco plants overexpressing VTE1 for increased tocopherol production from Arabidopsis thaliana. Liu X; Hua X; Guo J; Qi D; Wang L; Liu Z; Jin Z; Chen S; Liu G Biotechnol Lett; 2008 Jul; 30(7):1275-80. PubMed ID: 18317702 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]