BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 16245848)

  • 1. Quantitative structure--property relationships for enhancing predictions of synthetic organic chemical removal from drinking water by granular activated carbon.
    Magnuson ML; Speth TF
    Environ Sci Technol; 2005 Oct; 39(19):7706-11. PubMed ID: 16245848
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of pore-blocking background compounds on the kinetics of trace organic contaminant desorption from activated carbon.
    To PC; Mariñas BJ; Snoeyink VL; Ng WJ
    Environ Sci Technol; 2008 Jul; 42(13):4825-30. PubMed ID: 18678012
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effects of dissolved natural organic matter on the adsorption of synthetic organic chemicals by activated carbons and carbon nanotubes.
    Zhang S; Shao T; Karanfil T
    Water Res; 2011 Jan; 45(3):1378-86. PubMed ID: 21093009
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Differentiating between adsorption and biodegradation mechanisms while removing trace organic chemicals (TOrCs) in biological activated carbon (BAC) filters.
    Zhiteneva V; Ziemendorf É; Sperlich A; Drewes JE; Hübner U
    Sci Total Environ; 2020 Nov; 743():140567. PubMed ID: 32659552
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adsorption and desorption of trace organic contaminants from granular activated carbon adsorbers after intermittent loading and throughout backwash cycles.
    Corwin CJ; Summers RS
    Water Res; 2011 Jan; 45(2):417-26. PubMed ID: 20832095
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Competitive effects of natural organic matter: parametrization and verification of the three-component adsorption model COMPSORB.
    Ding L; Mariñas BJ; Schideman LC; Snoeyink VL; Li Q
    Environ Sci Technol; 2006 Jan; 40(1):350-6. PubMed ID: 16433371
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Removal of a synthetic organic chemical by PAC-UF systems--I: Theory and modeling.
    Matsui Y; Yuasa A; Ariga K
    Water Res; 2001 Feb; 35(2):455-63. PubMed ID: 11228999
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A review of quantitative structure-property relationships for the fate of ionizable organic chemicals in water matrices and identification of knowledge gaps.
    Nolte TM; Ragas AM
    Environ Sci Process Impacts; 2017 Mar; 19(3):221-246. PubMed ID: 28296985
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microbial regeneration of spent activated carbon dispersed with organic contaminants: mechanism, efficiency, and kinetic models.
    Nath K; Bhakhar MS
    Environ Sci Pollut Res Int; 2011 May; 18(4):534-46. PubMed ID: 21152991
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effect of water temperature on the adsorption equilibrium of dissolved organic matter and atrazine on granular activated carbon.
    Schreiber B; Schmalz V; Brinkmann T; Worch E
    Environ Sci Technol; 2007 Sep; 41(18):6448-53. PubMed ID: 17948792
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adsorption uptake of synthetic organic chemicals by carbon nanotubes and activated carbons.
    Brooks AJ; Lim HN; Kilduff JE
    Nanotechnology; 2012 Jul; 23(29):294008. PubMed ID: 22743805
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Impact of organic matter in water on the adsorption of EDCS (BPA) onto granular activated carbon (GAC) from the view of molecular weight distribution].
    Li RY; Gao NY; Xu B; Zen WH; Zhao JF; Le LS
    Huan Jing Ke Xue; 2006 Dec; 27(12):2488-94. PubMed ID: 17304846
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adsorption of dyes onto activated carbon cloth: using QSPRs as tools to approach adsorption mechanisms.
    Metivier-Pignon H; Faur C; Le Cloirec P
    Chemosphere; 2007 Jan; 66(5):887-93. PubMed ID: 16860370
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Three-component competitive adsorption model for fixed-bed and moving-bed granular activated carbon adsorbers. Part II. Model parameterization and verification.
    Schideman LC; Mariñas BJ; Snoeyink VL; Campos C
    Environ Sci Technol; 2006 Nov; 40(21):6812-7. PubMed ID: 17144315
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modeling equilibrium adsorption of organic micropollutants onto activated carbon.
    de Ridder DJ; Villacorte L; Verliefde AR; Verberk JQ; Heijman SG; Amy GL; van Dijk JC
    Water Res; 2010 May; 44(10):3077-86. PubMed ID: 20236679
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pore distribution effect of activated carbon in adsorbing organic micropollutants from natural water.
    Ebie K; Li F; Azuma Y; Yuasa A; Hagishita T
    Water Res; 2001 Jan; 35(1):167-79. PubMed ID: 11257871
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Adsorption characteristics of trace levels of bromate in drinking water by modified bamboo-based activated carbons.
    Chen HW; Chuang YH; Hsu CF; Huang WJ
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2017 Sep; 52(11):1055-1062. PubMed ID: 28783410
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Organic micropollutant desorption in various water matrices - Activated carbon pore characteristics determine the reversibility of adsorption.
    Aschermann G; Schröder C; Zietzschmann F; Jekel M
    Chemosphere; 2019 Dec; 237():124415. PubMed ID: 31398607
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantum-mechanical LSERs for the concentration-dependent adsorption of aromatic organic compounds by activated carbon: Applications and comparison with carbon nanotubes.
    Lata S; Vikas
    SAR QSAR Environ Res; 2019 Feb; 30(2):109-130. PubMed ID: 30727761
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Adsorption of organic contaminants by graphene nanosheets, carbon nanotubes and granular activated carbons under natural organic matter preloading conditions.
    Ersan G; Kaya Y; Apul OG; Karanfil T
    Sci Total Environ; 2016 Sep; 565():811-817. PubMed ID: 27107611
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.