These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 16245892)

  • 1. [Bacterial Fe(III) reduction].
    Hong YG; Xu MY; Guo J; Cen YH; Sun GP
    Wei Sheng Wu Xue Bao; 2005 Aug; 45(4):653-6. PubMed ID: 16245892
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microbiological evidence for Fe(III) reduction on early Earth.
    Vargas M; Kashefi K; Blunt-Harris EL; Lovley DR
    Nature; 1998 Sep; 395(6697):65-7. PubMed ID: 9738498
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electron shuttling via humic acids in microbial iron(III) reduction in a freshwater sediment.
    Kappler A; Benz M; Schink B; Brune A
    FEMS Microbiol Ecol; 2004 Jan; 47(1):85-92. PubMed ID: 19712349
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Anaerobic biodegradation of 1,4-dioxane by sludge enriched with iron-reducing microorganisms.
    Shen W; Chen H; Pan S
    Bioresour Technol; 2008 May; 99(7):2483-7. PubMed ID: 17884467
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metallic iron for environmental remediation: learning from the Becher process.
    Noubactep C
    J Hazard Mater; 2009 Sep; 168(2-3):1609-12. PubMed ID: 19327887
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Acceleration of the Fe(III)EDTA(-) reduction rate in BioDeNO(x) reactors by dosing electron mediating compounds.
    Maas Pv; Brink Pv; Klapwijk B; Lens P
    Chemosphere; 2009 Apr; 75(2):243-9. PubMed ID: 18561978
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bioenergetic challenges of microbial iron metabolisms.
    Bird LJ; Bonnefoy V; Newman DK
    Trends Microbiol; 2011 Jul; 19(7):330-40. PubMed ID: 21664821
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Anaerobic redox cycling of iron by freshwater sediment microorganisms.
    Weber KA; Urrutia MM; Churchill PF; Kukkadapu RK; Roden EE
    Environ Microbiol; 2006 Jan; 8(1):100-13. PubMed ID: 16343326
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microorganisms pumping iron: anaerobic microbial iron oxidation and reduction.
    Weber KA; Achenbach LA; Coates JD
    Nat Rev Microbiol; 2006 Oct; 4(10):752-64. PubMed ID: 16980937
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fe(III), Cr(VI), and Fe(III) mediated Cr(VI) reduction in alkaline media using a Halomonas isolate from Soap Lake, Washington.
    VanEngelen MR; Peyton BM; Mormile MR; Pinkart HC
    Biodegradation; 2008 Nov; 19(6):841-50. PubMed ID: 18401687
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transformation of vivianite by anaerobic nitrate-reducing iron-oxidizing bacteria.
    Miot J; Benzerara K; Morin G; Bernard S; Beyssac O; Larquet E; Kappler A; Guyot F
    Geobiology; 2009 Jun; 7(3):373-84. PubMed ID: 19573166
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biostimulation of iron reduction and subsequent oxidation of sediment containing Fe-silicates and Fe-oxides: effect of redox cycling on Fe(III) bioreduction.
    Komlos J; Kukkadapu RK; Zachara JM; Jaffé PR
    Water Res; 2007 Jul; 41(13):2996-3004. PubMed ID: 17467035
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Anaerobic reduction of humus/Fe (III) and electron transport mechanism of Fontibacter sp. SgZ-2].
    Ma C; Yang GQ; Lu Q; Zhou SG
    Huan Jing Ke Xue; 2014 Sep; 35(9):3522-9. PubMed ID: 25518675
    [TBL] [Abstract][Full Text] [Related]  

  • 14. PilR, a transcriptional regulator for pilin and other genes required for Fe(III) reduction in Geobacter sulfurreducens.
    Juárez K; Kim BC; Nevin K; Olvera L; Reguera G; Lovley DR; Methé BA
    J Mol Microbiol Biotechnol; 2009; 16(3-4):146-58. PubMed ID: 18253022
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Anaerobic humus and Fe(III) reduction and electron transport pathway by a novel humus-reducing bacterium, Thauera humireducens SgZ-1.
    Ma C; Yu Z; Lu Q; Zhuang L; Zhou SG
    Appl Microbiol Biotechnol; 2015 Apr; 99(8):3619-28. PubMed ID: 25503315
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The role of indigenous microorganisms in the biodegradation of naturally occurring petroleum, the reduction of iron, and the mobilization of arsenite from west bengal aquifer sediments.
    Rowland HA; Boothman C; Pancost R; Gault AG; Polya DA; Lloyd JR
    J Environ Qual; 2009; 38(4):1598-607. PubMed ID: 19549936
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Physiology of organotrophic and lithotrophic growth of the thermophilic iron-reducing bacteria Thermoterrabacterium ferrireducens and Thermoanaerobacter siderophilus].
    Gavrilov SN; Bonch-Osmolovskaia EA; Slobodkin AI
    Mikrobiologiia; 2003; 72(2):161-7. PubMed ID: 12751237
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biochemistry, physiology and biotechnology of sulfate-reducing bacteria.
    Barton LL; Fauque GD
    Adv Appl Microbiol; 2009; 68():41-98. PubMed ID: 19426853
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Degradation of BTX by dissimilatory iron-reducing cultures.
    Botton S; Parsons JR
    Biodegradation; 2007 Jun; 18(3):371-81. PubMed ID: 17091352
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Characterization of membrane-bound Fe(III)-EDTA reductase activities of the thermophilic gram-positive dissimilatory iron-reducing bacterium Thermoterrabacterium ferrireducens].
    Gavrilov SN; Slobodkin AI; Robb FT; de Vries S
    Mikrobiologiia; 2007; 76(2):164-71. PubMed ID: 17583211
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.