These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
245 related articles for article (PubMed ID: 16245948)
1. Redox and spectroscopic properties of human indoleamine 2,3-dioxygenase and a His303Ala variant: implications for catalysis. Papadopoulou ND; Mewies M; McLean KJ; Seward HE; Svistunenko DA; Munro AW; Raven EL Biochemistry; 2005 Nov; 44(43):14318-28. PubMed ID: 16245948 [TBL] [Abstract][Full Text] [Related]
2. Oxidation of L-tryptophan in biology: a comparison between tryptophan 2,3-dioxygenase and indoleamine 2,3-dioxygenase. Rafice SA; Chauhan N; Efimov I; Basran J; Raven EL Biochem Soc Trans; 2009 Apr; 37(Pt 2):408-12. PubMed ID: 19290871 [TBL] [Abstract][Full Text] [Related]
3. Interactions between nitric oxide and indoleamine 2,3-dioxygenase. Samelson-Jones BJ; Yeh SR Biochemistry; 2006 Jul; 45(28):8527-38. PubMed ID: 16834326 [TBL] [Abstract][Full Text] [Related]
4. Human tryptophan dioxygenase: a comparison to indoleamine 2,3-dioxygenase. Batabyal D; Yeh SR J Am Chem Soc; 2007 Dec; 129(50):15690-701. PubMed ID: 18027945 [TBL] [Abstract][Full Text] [Related]
5. Redox-dependent structural changes in an engineered heme-copper center in myoglobin: insights into chloride binding to CuB in heme copper oxidases. Zhao X; Nilges MJ; Lu Y Biochemistry; 2005 May; 44(17):6559-64. PubMed ID: 15850389 [TBL] [Abstract][Full Text] [Related]
6. The selenazal drug ebselen potently inhibits indoleamine 2,3-dioxygenase by targeting enzyme cysteine residues. Terentis AC; Freewan M; Sempértegui Plaza TS; Raftery MJ; Stocker R; Thomas SR Biochemistry; 2010 Jan; 49(3):591-600. PubMed ID: 20000778 [TBL] [Abstract][Full Text] [Related]
7. The role of serine 167 in human indoleamine 2,3-dioxygenase: a comparison with tryptophan 2,3-dioxygenase. Chauhan N; Basran J; Efimov I; Svistunenko DA; Seward HE; Moody PC; Raven EL Biochemistry; 2008 Apr; 47(16):4761-9. PubMed ID: 18370410 [TBL] [Abstract][Full Text] [Related]
8. Redox control in heme proteins: electrostatic substitution in the active site of leghemoglobin. Jones DK; Patel N; Raven EL Arch Biochem Biophys; 2002 Apr; 400(1):111-7. PubMed ID: 11913977 [TBL] [Abstract][Full Text] [Related]
9. ONIOM study on a missing piece in our understanding of heme chemistry: bacterial tryptophan 2,3-dioxygenase with dual oxidants. Chung LW; Li X; Sugimoto H; Shiro Y; Morokuma K J Am Chem Soc; 2010 Sep; 132(34):11993-2005. PubMed ID: 20698527 [TBL] [Abstract][Full Text] [Related]
10. Heme speciation in alkaline ferric FixL and possible tyrosine involvement in the signal transduction pathway for regulation of nitrogen fixation. Lukat-Rodgers GS; Rexine JL; Rodgers KR Biochemistry; 1998 Sep; 37(39):13543-52. PubMed ID: 9753440 [TBL] [Abstract][Full Text] [Related]
11. Extensive studies of the heme coordination structure of indoleamine 2,3-dioxygenase and of tryptophan binding with magnetic and natural circular dichroism and electron paramagnetic resonance spectroscopy. Sono M; Dawson JH Biochim Biophys Acta; 1984 Sep; 789(2):170-87. PubMed ID: 6089893 [TBL] [Abstract][Full Text] [Related]
12. Crystal structure and mechanism of tryptophan 2,3-dioxygenase, a heme enzyme involved in tryptophan catabolism and in quinolinate biosynthesis. Zhang Y; Kang SA; Mukherjee T; Bale S; Crane BR; Begley TP; Ealick SE Biochemistry; 2007 Jan; 46(1):145-55. PubMed ID: 17198384 [TBL] [Abstract][Full Text] [Related]
13. Density functional theory study on a missing piece in understanding of heme chemistry: the reaction mechanism for indoleamine 2,3-dioxygenase and tryptophan 2,3-dioxygenase. Chung LW; Li X; Sugimoto H; Shiro Y; Morokuma K J Am Chem Soc; 2008 Sep; 130(37):12299-309. PubMed ID: 18712870 [TBL] [Abstract][Full Text] [Related]
14. Iron oxidation state modulates active site structure in a heme peroxidase. Badyal SK; Metcalfe CL; Basran J; Efimov I; Moody PC; Raven EL Biochemistry; 2008 Apr; 47(15):4403-9. PubMed ID: 18351739 [TBL] [Abstract][Full Text] [Related]
15. Evaluation of electron-withdrawing group effects on heme binding in designed proteins: implications for heme a in cytochrome c oxidase. Zhuang J; Amoroso JH; Kinloch R; Dawson JH; Baldwin MJ; Gibney BR Inorg Chem; 2006 Jun; 45(12):4685-94. PubMed ID: 16749832 [TBL] [Abstract][Full Text] [Related]
16. Dioxygenases without requirement for cofactors and their chemical model reaction: compulsory order ternary complex mechanism of 1H-3-hydroxy-4-oxoquinaldine 2,4-dioxygenase involving general base catalysis by histidine 251 and single-electron oxidation of the substrate dianion. Frerichs-Deeken U; Ranguelova K; Kappl R; Hüttermann J; Fetzner S Biochemistry; 2004 Nov; 43(45):14485-99. PubMed ID: 15533053 [TBL] [Abstract][Full Text] [Related]
17. How is the distal pocket of a heme protein optimized for binding of tryptophan? Chauhan N; Basran J; Rafice SA; Efimov I; Millett ES; Mowat CG; Moody PC; Handa S; Raven EL FEBS J; 2012 Dec; 279(24):4501-9. PubMed ID: 23083473 [TBL] [Abstract][Full Text] [Related]
18. Nitrosyl-heme structures of Bacillus subtilis nitric oxide synthase have implications for understanding substrate oxidation. Pant K; Crane BR Biochemistry; 2006 Feb; 45(8):2537-44. PubMed ID: 16489746 [TBL] [Abstract][Full Text] [Related]
19. Characterization of the nitrosyl adduct of substrate-bound mouse cysteine dioxygenase by electron paramagnetic resonance: electronic structure of the active site and mechanistic implications. Pierce BS; Gardner JD; Bailey LJ; Brunold TC; Fox BG Biochemistry; 2007 Jul; 46(29):8569-78. PubMed ID: 17602574 [TBL] [Abstract][Full Text] [Related]
20. The second step of the nitric oxide synthase reaction: evidence for ferric-peroxo as the active oxidant. Woodward JJ; Chang MM; Martin NI; Marletta MA J Am Chem Soc; 2009 Jan; 131(1):297-305. PubMed ID: 19128180 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]