These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

253 related articles for article (PubMed ID: 16246081)

  • 1. Access of the substrate to the active site of squalene and oxidosqualene cyclases: comparative inhibition, site-directed mutagenesis and homology-modelling studies.
    Oliaro-Bosso S; Schulz-Gasch T; Taramino S; Scaldaferri M; Viola F; Balliano G
    Biochem Soc Trans; 2005 Nov; 33(Pt 5):1202-5. PubMed ID: 16246081
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Access of the substrate to the active site of yeast oxidosqualene cyclase: an inhibition and site-directed mutagenesis approach.
    Oliaro-Bosso S; Schulz-Gasch T; Balliano G; Viola F
    Chembiochem; 2005 Dec; 6(12):2221-8. PubMed ID: 16235265
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phenylalanine 445 within oxidosqualene-lanosterol cyclase from Saccharomyces cerevisiae influences C-Ring cyclization and deprotonation reactions.
    Wu TK; Liu YT; Chiu FH; Chang CH
    Org Lett; 2006 Oct; 8(21):4691-4. PubMed ID: 17020279
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Alteration of the substrate's prefolded conformation and cyclization stereochemistry of oxidosqualene-lanosterol cyclase of Saccharomyces cerevisiae by substitution at phenylalanine 699.
    Wu TK; Chang CH; Wen HY; Liu YT; Li WH; Wang TT; Shie WS
    Org Lett; 2010 Feb; 12(3):500-3. PubMed ID: 20055456
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Histidine residue at position 234 of oxidosqualene-lanosterol cyclase from saccharomyces cerevisiae simultaneously influences cyclization, rearrangement, and deprotonation reactions.
    Wu TK; Liu YT; Chang CH
    Chembiochem; 2005 Jul; 6(7):1177-81. PubMed ID: 15915534
    [No Abstract]   [Full Text] [Related]  

  • 6. Mechanistic insights into oxidosqualene cyclizations through homology modeling.
    Schulz-Gasch T; Stahl M
    J Comput Chem; 2003 Apr; 24(6):741-53. PubMed ID: 12666166
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Deletion of the Gly600 residue of Alicyclobacillus acidocaldarius squalene cyclase alters the substrate specificity into that of the eukaryotic-type cyclase specific to (3S)-2,3-oxidosqualene.
    Hoshino T; Shimizu K; Sato T
    Angew Chem Int Ed Engl; 2004 Dec; 43(48):6700-3. PubMed ID: 15593147
    [No Abstract]   [Full Text] [Related]  

  • 8. Site-saturated mutagenesis of histidine 234 of Saccharomyces cerevisiae oxidosqualene-lanosterol cyclase demonstrates dual functions in cyclization and rearrangement reactions.
    Wu TK; Liu YT; Chang CH; Yu MT; Wang HJ
    J Am Chem Soc; 2006 May; 128(19):6414-9. PubMed ID: 16683806
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of the channel constriction allowing the access of the substrate to the active site of yeast oxidosqualene cyclase.
    Oliaro-Bosso S; Caron G; Taramino S; Ermondi G; Viola F; Balliano G
    PLoS One; 2011; 6(7):e22134. PubMed ID: 21811565
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The binding site for an inhibitor of squalene:hopene cyclase determined using photoaffinity labeling and molecular modeling.
    Dang T; Abe I; Zheng YF; Prestwich GD
    Chem Biol; 1999 Jun; 6(6):333-41. PubMed ID: 10375539
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Site-directed mutagenesis of UDP-galactopyranose mutase reveals a critical role for the active-site, conserved arginine residues.
    Chad JM; Sarathy KP; Gruber TD; Addala E; Kiessling LL; Sanders DA
    Biochemistry; 2007 Jun; 46(23):6723-32. PubMed ID: 17511471
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Site-directed mutagenesis of squalene-hopene cyclase: altered substrate specificity and product distribution.
    Dang T; Prestwich GD
    Chem Biol; 2000 Aug; 7(8):643-9. PubMed ID: 11048954
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Specific aspartate residues in FET3 control high-affinity iron transport in Saccharomyces cerevisiae.
    Bonaccorsi di Patti MC; Felice MR; De Domenico I; Lania A; Alaleona F; Musci G
    Yeast; 2005 Jul; 22(9):677-87. PubMed ID: 16032772
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A complete library of amino acid alterations at R306 in Streptomyces clavuligerus deacetoxycephalosporin C synthase demonstrates its structural role in the ring-expansion activity.
    Sim Goo K; Song Chua C; Sim TS
    Proteins; 2008 Feb; 70(3):739-47. PubMed ID: 17729280
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Insight into steroid scaffold formation from the structure of human oxidosqualene cyclase.
    Thoma R; Schulz-Gasch T; D'Arcy B; Benz J; Aebi J; Dehmlow H; Hennig M; Stihle M; Ruf A
    Nature; 2004 Nov; 432(7013):118-22. PubMed ID: 15525992
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Purification, kinetics, inhibitors and CD for recombinant β-amyrin synthase from Euphorbia tirucalli L and functional analysis of the DCTA motif, which is highly conserved among oxidosqualene cyclases.
    Ito R; Masukawa Y; Hoshino T
    FEBS J; 2013 Mar; 280(5):1267-80. PubMed ID: 23294602
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Crucial effects of amino acid side chain length in transmembrane segment 5 on substrate affinity in yeast glucose transporter Hxt7.
    Kasahara T; Shimogawara K; Kasahara M
    Biochemistry; 2011 Oct; 50(40):8674-81. PubMed ID: 21892826
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Kinetic studies on the function of all the conserved tryptophans involved inside and outside the QW motifs of squalene-hopene cyclase: stabilizing effect of the protein structure against thermal denaturation.
    Sato T; Hoshino T
    Biosci Biotechnol Biochem; 1999 Jul; 63(7):1171-80. PubMed ID: 10478444
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tryptophan 232 within oxidosqualene-lanosterol cyclase from Saccharomyces cerevisiae influences rearrangement and deprotonation but not cyclization reactions.
    Wu TK; Yu MT; Liu YT; Chang CH; Wang HJ; Diau EW
    Org Lett; 2006 Mar; 8(7):1319-22. PubMed ID: 16562881
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The structure of the membrane protein squalene-hopene cyclase at 2.0 A resolution.
    Wendt KU; Lenhart A; Schulz GE
    J Mol Biol; 1999 Feb; 286(1):175-87. PubMed ID: 9931258
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.