BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

345 related articles for article (PubMed ID: 16246122)

  • 1. Thiol redox control via thioredoxin and glutaredoxin systems.
    Holmgren A; Johansson C; Berndt C; Lönn ME; Hudemann C; Lillig CH
    Biochem Soc Trans; 2005 Dec; 33(Pt 6):1375-7. PubMed ID: 16246122
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modulation of thiol-dependent redox system by metal ions via thioredoxin and glutaredoxin systems.
    Ouyang Y; Peng Y; Li J; Holmgren A; Lu J
    Metallomics; 2018 Feb; 10(2):218-228. PubMed ID: 29410996
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thiol-based mechanisms of the thioredoxin and glutaredoxin systems: implications for diseases in the cardiovascular system.
    Berndt C; Lillig CH; Holmgren A
    Am J Physiol Heart Circ Physiol; 2007 Mar; 292(3):H1227-36. PubMed ID: 17172268
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Protective effects of the thioredoxin and glutaredoxin systems in dopamine-induced cell death.
    Arodin L; Miranda-Vizuete A; Swoboda P; Fernandes AP
    Free Radic Biol Med; 2014 Aug; 73():328-36. PubMed ID: 24863694
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Distinct Roles of Shewanella oneidensis Thioredoxin in Regulation of Cellular Responses to Hydrogen and Organic Peroxides.
    Feng X; Sun W; Kong L; Gao H
    Appl Environ Microbiol; 2019 Nov; 85(21):. PubMed ID: 31444207
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Glutaredoxin 2 catalyzes the reversible oxidation and glutathionylation of mitochondrial membrane thiol proteins: implications for mitochondrial redox regulation and antioxidant DEFENSE.
    Beer SM; Taylor ER; Brown SE; Dahm CC; Costa NJ; Runswick MJ; Murphy MP
    J Biol Chem; 2004 Nov; 279(46):47939-51. PubMed ID: 15347644
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thioredoxins, glutaredoxins, and glutathionylation: new crosstalks to explore.
    Michelet L; Zaffagnini M; Massot V; Keryer E; Vanacker H; Miginiac-Maslow M; Issakidis-Bourguet E; Lemaire SD
    Photosynth Res; 2006 Sep; 89(2-3):225-45. PubMed ID: 17089213
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Disulphide formation on mitochondrial protein thiols.
    Hurd TR; Filipovska A; Costa NJ; Dahm CC; Murphy MP
    Biochem Soc Trans; 2005 Dec; 33(Pt 6):1390-3. PubMed ID: 16246126
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Alcohol induces mitochondrial redox imbalance in alveolar macrophages.
    Liang Y; Harris FL; Jones DP; Brown LAS
    Free Radic Biol Med; 2013 Dec; 65():1427-1434. PubMed ID: 24140864
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Redox regulation, thioredoxins, and glutaredoxins in retrograde signalling and gene transcription.
    Sevilla F; Martí MC; De Brasi-Velasco S; Jiménez A
    J Exp Bot; 2023 Oct; 74(19):5955-5969. PubMed ID: 37453076
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Conferring specificity in redox pathways by enzymatic thiol/disulfide exchange reactions.
    Netto LE; de Oliveira MA; Tairum CA; da Silva Neto JF
    Free Radic Res; 2016; 50(2):206-45. PubMed ID: 26573728
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The integration of TRX/GRX systems and phytohormonal signalling pathways in plant stress and development.
    Jiménez A; López-Martínez R; Martí MC; Cano-Yelo D; Sevilla F
    Plant Physiol Biochem; 2024 Feb; 207():108298. PubMed ID: 38176187
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inhibition of the glutaredoxin and thioredoxin systems and ribonucleotide reductase by mutant p53-targeting compound APR-246.
    Haffo L; Lu J; Bykov VJN; Martin SS; Ren X; Coppo L; Wiman KG; Holmgren A
    Sci Rep; 2018 Aug; 8(1):12671. PubMed ID: 30140002
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nuclear thiol redox systems in plants.
    Delorme-Hinoux V; Bangash SA; Meyer AJ; Reichheld JP
    Plant Sci; 2016 Feb; 243():84-95. PubMed ID: 26795153
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Glutaredoxin 2 reduces both thioredoxin 2 and thioredoxin 1 and protects cells from apoptosis induced by auranofin and 4-hydroxynonenal.
    Zhang H; Du Y; Zhang X; Lu J; Holmgren A
    Antioxid Redox Signal; 2014 Aug; 21(5):669-81. PubMed ID: 24295294
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thioredoxin and glutaredoxin systems in plants: molecular mechanisms, crosstalks, and functional significance.
    Meyer Y; Belin C; Delorme-Hinoux V; Reichheld JP; Riondet C
    Antioxid Redox Signal; 2012 Oct; 17(8):1124-60. PubMed ID: 22531002
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sensitivity of protein sulfhydryl repair enzymes to oxidative stress.
    Starke DW; Chen Y; Bapna CP; Lesnefsky EJ; Mieyal JJ
    Free Radic Biol Med; 1997; 23(3):373-84. PubMed ID: 9214573
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Differential oxidation of thioredoxin-1, thioredoxin-2, and glutathione by metal ions.
    Hansen JM; Zhang H; Jones DP
    Free Radic Biol Med; 2006 Jan; 40(1):138-45. PubMed ID: 16337887
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thiol regulation of pro-inflammatory cytokines and innate immunity: protein S-thiolation as a novel molecular mechanism.
    Coppo L; Ghezzi P
    Biochem Soc Trans; 2011 Oct; 39(5):1268-72. PubMed ID: 21936800
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Selective Disruption of Mitochondrial Thiol Redox State in Cells and In Vivo.
    Booty LM; Gawel JM; Cvetko F; Caldwell ST; Hall AR; Mulvey JF; James AM; Hinchy EC; Prime TA; Arndt S; Beninca C; Bright TP; Clatworthy MR; Ferdinand JR; Prag HA; Logan A; Prudent J; Krieg T; Hartley RC; Murphy MP
    Cell Chem Biol; 2019 Mar; 26(3):449-461.e8. PubMed ID: 30713096
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.