These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
293 related articles for article (PubMed ID: 16246384)
1. Using remote sensing and geographic information systems to identify villages at high risk for rhodesiense sleeping sickness in Uganda. Odiit M; Bessell PR; Fèvre EM; Robinson T; Kinoti J; Coleman PG; Welburn SC; McDermott J; Woolhouse ME Trans R Soc Trop Med Hyg; 2006 Apr; 100(4):354-62. PubMed ID: 16246384 [TBL] [Abstract][Full Text] [Related]
2. Spatial and temporal risk factors for the early detection of Trypanosoma brucei rhodesiense sleeping sickness patients in Tororo and Busia districts, Uganda. Odiit M; Coleman PG; McDermott JJ; Fèvre EM; Welburn SC; Woolhouse ME Trans R Soc Trop Med Hyg; 2004 Oct; 98(10):569-76. PubMed ID: 15289093 [TBL] [Abstract][Full Text] [Related]
3. [Geographical Information Systems and remote sensing technologies in parasitological epidemiology]. Rinaldi L; Cascone C; Sibilio G; Musella V; Taddei R; Cringoli G Parassitologia; 2004 Jun; 46(1-2):71-4. PubMed ID: 15305690 [TBL] [Abstract][Full Text] [Related]
4. Sleeping sickness in southeastern Uganda: a spatio-temporal analysis of disease risk, 1970-2003. Berrang-Ford L; Berke O; Sweeney S; Abdelrahman L Vector Borne Zoonotic Dis; 2010 Dec; 10(10):977-88. PubMed ID: 20482341 [TBL] [Abstract][Full Text] [Related]
5. Temporal and spatial epidemiology of sleeping sickness and use of geographical information system (GIS) in Kenya. Rutto JJ; Karuga JW J Vector Borne Dis; 2009 Mar; 46(1):18-25. PubMed ID: 19326704 [TBL] [Abstract][Full Text] [Related]
6. Prediction of villages at risk for filariasis transmission in the Nile Delta using remote sensing and geographic information system technologies. Hassan AN; Beck LR; Dister S J Egypt Soc Parasitol; 1998 Apr; 28(1):75-87. PubMed ID: 9617045 [TBL] [Abstract][Full Text] [Related]
7. Remote Sensing and Geographic Information Systems and risk of American visceral leishmaniasis in Bahia, Brazil. Bavia ME; Carneiro DD; Gurgel Hda C; Madureira Filho C; Barbosa MG Parassitologia; 2005 Mar; 47(1):165-9. PubMed ID: 16044686 [TBL] [Abstract][Full Text] [Related]
8. Remote sensing and GIS integration for land cover analysis, a case study: Bozcaada Island. Bektas F; Goksel C Water Sci Technol; 2005; 51(11):239-44. PubMed ID: 16114638 [TBL] [Abstract][Full Text] [Related]
9. Central point sampling from cattle in livestock markets in areas of human sleeping sickness. Fèvre EM; Tilley A; Picozzi K; Fyfe J; Anderson I; Magona JW; Shaw DJ; Eisler MC; Welburn SC Acta Trop; 2006 Feb; 97(2):229-32. PubMed ID: 16387279 [TBL] [Abstract][Full Text] [Related]
10. Duration of symptoms and case fatality of sleeping sickness caused by Trypanosoma brucei rhodesiense in Tororo, Uganda. Odiit M; Kansiime F; Enyaru JC East Afr Med J; 1997 Dec; 74(12):792-5. PubMed ID: 9557424 [TBL] [Abstract][Full Text] [Related]
11. Mapping of risk prone areas of kala-azar (Visceral leishmaniasis) in parts of Bihar State, India: an RS and GIS approach. Sudhakar S; Srinivas T; Palit A; Kar SK; Battacharya SK J Vector Borne Dis; 2006 Sep; 43(3):115-22. PubMed ID: 17024860 [TBL] [Abstract][Full Text] [Related]
12. [Pheno-climatic profiles of vegetation based on multitemporal analysis of satellite data]. Taddei R Parassitologia; 2004 Jun; 46(1-2):63-6. PubMed ID: 15305688 [TBL] [Abstract][Full Text] [Related]
13. Land desertification monitoring and assessment in Yulin of Northwest China using remote sensing and geographic information systems (GIS). Zhang Y; Chen Z; Zhu B; Luo X; Guan Y; Guo S; Nie Y Environ Monit Assess; 2008 Dec; 147(1-3):327-37. PubMed ID: 18197462 [TBL] [Abstract][Full Text] [Related]
14. The origins of a new Trypanosoma brucei rhodesiense sleeping sickness outbreak in eastern Uganda. Fèvre EM; Coleman PG; Odiit M; Magona JW; Welburn SC; Woolhouse ME Lancet; 2001 Aug; 358(9282):625-8. PubMed ID: 11530149 [TBL] [Abstract][Full Text] [Related]
15. Predicting density of Ixodes pacificus nymphs in dense woodlands in Mendocino County, California, based on geographic information systems and remote sensing versus field-derived data. Eisen RJ; Eisen L; Lane RS Am J Trop Med Hyg; 2006 Apr; 74(4):632-40. PubMed ID: 16606998 [TBL] [Abstract][Full Text] [Related]
16. Characterization of sleeping sickness transmission sites in rural and periurban areas of Kinshasa (République Démocratique du Congo). Grébaut P; Bena JM; Manzambi EZ; Mansinsa P; Khande V; Ollivier G; Cuny G; Simo G Vector Borne Zoonotic Dis; 2009 Dec; 9(6):631-6. PubMed ID: 19272002 [TBL] [Abstract][Full Text] [Related]
17. Public-private partnership works to stamp out sleeping sickness in Uganda. Kabasa JD Trends Parasitol; 2007 May; 23(5):191-2. PubMed ID: 17392023 [No Abstract] [Full Text] [Related]
18. [Integration of demographic factors in the characterization of risk areas for sleeping sickness in Côte d'Ivoire]. Fournet F; Kone A; Meda AH; Traore S; Hervouet JP Med Trop (Mars); 2001; 61(4-5):372-5. PubMed ID: 11803829 [TBL] [Abstract][Full Text] [Related]
19. [An epidemiological survey to discover the probable places of infection with sleeping sickness in the Central African Republic]. Gouteux JP; Kounda Gboumbi JC; D'Amico F; Wagner C; Noutoua L; Bailly C Bull World Health Organ; 1993; 71(5):605-14. PubMed ID: 8261564 [TBL] [Abstract][Full Text] [Related]
20. Analysis of risk factors for T. brucei rhodesiense sleeping sickness within villages in south-east Uganda. Zoller T; Fèvre EM; Welburn SC; Odiit M; Coleman PG BMC Infect Dis; 2008 Jun; 8():88. PubMed ID: 18590541 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]