These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

234 related articles for article (PubMed ID: 16246477)

  • 21. Mobility of copper in greenhouse soils.
    Kokkinaki A; Tzoraki OA; Tyrovola K; Nuikolaidis NP
    J Hazard Mater; 2007 Nov; 149(3):557-61. PubMed ID: 17689861
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Antimony, arsenic and lead distribution in soils and plants of an agricultural area impacted by former mining activities.
    Álvarez-Ayuso E; Otones V; Murciego A; García-Sánchez A; Regina IS
    Sci Total Environ; 2012 Nov; 439():35-43. PubMed ID: 23063636
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Surface complexation modeling and spectroscopic evidence of antimony adsorption on iron-oxide-rich red earth soils.
    Vithanage M; Rajapaksha AU; Dou X; Bolan NS; Yang JE; Ok YS
    J Colloid Interface Sci; 2013 Sep; 406():217-24. PubMed ID: 23791229
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Antimony availability in highly polluted soils and sediments - a comparison of single extractions.
    Ettler V; Mihaljevic M; Sebek O; Nechutný Z
    Chemosphere; 2007 Jun; 68(3):455-63. PubMed ID: 17306325
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Adsorption and desorption processes of MCPA in Polish mineral soils.
    Paszko T
    J Environ Sci Health B; 2011; 46(7):569-80. PubMed ID: 21722084
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Fractionation and redox speciation of antimony in agricultural soils by hydride generation--atomic fluorescence spectrometry and stability of Sb(III) and Sb(V) during extraction with different extractant solutions.
    Fuentes E; Pinochet H; Potin-Gautier M; De Graegori I
    J AOAC Int; 2004; 87(1):60-7. PubMed ID: 15084088
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Laboratory evaluation of mobility and sorption for the veterinary antibiotic, tylosin, in agricultural soils.
    Hu D; Coats JR
    J Environ Monit; 2009 Sep; 11(9):1634-8. PubMed ID: 19724833
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Soil organic matter affects arsenic and antimony sorption in anaerobic soils.
    Verbeeck M; Thiry Y; Smolders E
    Environ Pollut; 2020 Feb; 257():113566. PubMed ID: 31813702
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Antimony speciation in soil samples along two Austrian motorways by HPLC-ID-ICP-MS.
    Amereih S; Meisel T; Scholger R; Wegscheider W
    J Environ Monit; 2005 Dec; 7(12):1200-6. PubMed ID: 16307072
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Measurement of total antimony and antimony species in mine contaminated soils by ICPMS and HPLC-ICPMS.
    Telford K; Maher W; Krikowa F; Foster S
    J Environ Monit; 2008 Jan; 10(1):136-40. PubMed ID: 18175027
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Behavior of a surface applied radionuclide and a dye tracer in structured and repacked soil monoliths.
    Albrecht A; Schultze U; Bugallo PB; Wydler H; Frossard E; Flühler H
    J Environ Radioact; 2003; 68(1):47-64. PubMed ID: 12726698
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Extractable copper, arsenic and antimony by EDTA solution from agricultural Chilean soils and its transfer to alfalfa plants (Medicago sativa L.).
    De Gregori I; Fuentes E; Olivares D; Pinochet H
    J Environ Monit; 2004 Jan; 6(1):38-47. PubMed ID: 14737469
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Potential negative consequences of adding phosphorus-based fertilizers to immobilize lead in soil.
    Kilgour DW; Moseley RB; Barnett MO; Savage KS; Jardine PM
    J Environ Qual; 2008; 37(5):1733-40. PubMed ID: 18689734
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The ratio of clay content to total organic carbon content is a useful parameter to predict adsorption of the herbicide butachlor in soils.
    Liu Z; He Y; Xu J; Huang P; Jilani G
    Environ Pollut; 2008 Mar; 152(1):163-71. PubMed ID: 17601643
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Distribution, speciation and availability of antimony (Sb) in soils and terrestrial plants from an active Sb mining area.
    Okkenhaug G; Zhu YG; Luo L; Lei M; Li X; Mulder J
    Environ Pollut; 2011 Oct; 159(10):2427-34. PubMed ID: 21767897
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Adsorption and desorption characteristics of monosulfuron in Chinese soils.
    Tang Z; Zhang W; Chen Y
    J Hazard Mater; 2009 Jul; 166(2-3):1351-6. PubMed ID: 19179002
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Bioavailability of arsenic and antimony in soils from an abandoned mining area, Glendinning (SW Scotland).
    Gál J; Hursthouse A; Cuthbert S
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2007 Jul; 42(9):1263-74. PubMed ID: 17654146
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Estimating the distribution of radionuclides in agricultural soils - dependence on soil parameters.
    Hormann V; Fischer HW
    J Environ Radioact; 2013 Oct; 124():278-86. PubMed ID: 23871968
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Influence of pH on pesticide sorption by soil containing wheat residue-derived char.
    Sheng G; Yang Y; Huang M; Yang K
    Environ Pollut; 2005 Apr; 134(3):457-63. PubMed ID: 15620591
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Antimony (Sb) contaminated shooting range soil: Sb mobility and immobilization by soil amendments.
    Okkenhaug G; Amstätter K; Lassen Bue H; Cornelissen G; Breedveld GD; Henriksen T; Mulder J
    Environ Sci Technol; 2013 Jun; 47(12):6431-9. PubMed ID: 23668960
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.