These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
391 related articles for article (PubMed ID: 16246536)
1. Drug permeability across a phospholipid vesicle based barrier: a novel approach for studying passive diffusion. Flaten GE; Dhanikula AB; Luthman K; Brandl M Eur J Pharm Sci; 2006 Jan; 27(1):80-90. PubMed ID: 16246536 [TBL] [Abstract][Full Text] [Related]
2. Drug permeability across a phospholipid vesicle-based barrier 2. Characterization of barrier structure, storage stability and stability towards pH changes. Flaten GE; Bunjes H; Luthman K; Brandl M Eur J Pharm Sci; 2006 Jul; 28(4):336-43. PubMed ID: 16697561 [TBL] [Abstract][Full Text] [Related]
3. Drug permeability across a phospholipid vesicle based barrier: 3. Characterization of drug-membrane interactions and the effect of agitation on the barrier integrity and on the permeability. Flaten GE; Skar M; Luthman K; Brandl M Eur J Pharm Sci; 2007 Mar; 30(3-4):324-32. PubMed ID: 17204409 [TBL] [Abstract][Full Text] [Related]
4. Parallel artificial membrane permeability assay (PAMPA) combined with a 10-day multiscreen Caco-2 cell culture as a tool for assessing new drug candidates. Masungi C; Mensch J; Van Dijck A; Borremans C; Willems B; Mackie C; Noppe M; Brewster ME Pharmazie; 2008 Mar; 63(3):194-9. PubMed ID: 18444507 [TBL] [Abstract][Full Text] [Related]
5. Investigation of vesicle electrokinetic chromatography as an in vitro assay for the estimation of intestinal permeability of pharmaceutical drug candidates. Pascoe RJ; Masucci JA; Foley JP Electrophoresis; 2006 Feb; 27(4):793-804. PubMed ID: 16411277 [TBL] [Abstract][Full Text] [Related]
6. Calcein permeation across phosphatidylcholine bilayer membrane: effects of membrane fluidity, liposome size, and immobilization. Shimanouchi T; Ishii H; Yoshimoto N; Umakoshi H; Kuboi R Colloids Surf B Biointerfaces; 2009 Oct; 73(1):156-60. PubMed ID: 19560324 [TBL] [Abstract][Full Text] [Related]
7. Caco-2 permeability of weakly basic drugs predicted with the double-sink PAMPA pKa(flux) method. Avdeef A; Artursson P; Neuhoff S; Lazorova L; Gråsjö J; Tavelin S Eur J Pharm Sci; 2005 Mar; 24(4):333-49. PubMed ID: 15734300 [TBL] [Abstract][Full Text] [Related]
8. QSAR study on permeability of hydrophobic compounds with artificial membranes. Fujikawa M; Nakao K; Shimizu R; Akamatsu M Bioorg Med Chem; 2007 Jun; 15(11):3756-67. PubMed ID: 17418579 [TBL] [Abstract][Full Text] [Related]
9. Evaluation of various PAMPA models to identify the most discriminating method for the prediction of BBB permeability. Mensch J; Melis A; Mackie C; Verreck G; Brewster ME; Augustijns P Eur J Pharm Biopharm; 2010 Mar; 74(3):495-502. PubMed ID: 20067834 [TBL] [Abstract][Full Text] [Related]
10. Absorption of poorly water soluble drugs subject to apical efflux using phospholipids as solubilizers in the Caco-2 cell model. Kapitza SB; Michel BR; van Hoogevest P; Leigh ML; Imanidis G Eur J Pharm Biopharm; 2007 Apr; 66(1):146-58. PubMed ID: 17071065 [TBL] [Abstract][Full Text] [Related]
11. In silico prediction of human oral absorption based on QSAR analyses of PAMPA permeability. Akamatsu M; Fujikawa M; Nakao K; Shimizu R Chem Biodivers; 2009 Nov; 6(11):1845-66. PubMed ID: 19937826 [TBL] [Abstract][Full Text] [Related]
12. In-vitro permeability screening of melt extrudate formulations containing poorly water-soluble drug compounds using the phospholipid vesicle-based barrier. Kanzer J; Tho I; Flaten GE; Mägerlein M; Hölig P; Fricker G; Brandl M J Pharm Pharmacol; 2010 Nov; 62(11):1591-8. PubMed ID: 21039543 [TBL] [Abstract][Full Text] [Related]
13. Permeation prediction of M100240 using the parallel artificial membrane permeability assay. Hwang KK; Martin NE; Jiang L; Zhu C J Pharm Pharm Sci; 2003; 6(3):315-20. PubMed ID: 14738711 [TBL] [Abstract][Full Text] [Related]
14. Development and evaluation of an in vitro method for prediction of human drug absorption II. Demonstration of the method suitability. Corti G; Maestrelli F; Cirri M; Zerrouk N; Mura P Eur J Pharm Sci; 2006 Mar; 27(4):354-62. PubMed ID: 16364612 [TBL] [Abstract][Full Text] [Related]
15. Liposomes and skin: from drug delivery to model membranes. El Maghraby GM; Barry BW; Williams AC Eur J Pharm Sci; 2008 Aug; 34(4-5):203-22. PubMed ID: 18572392 [TBL] [Abstract][Full Text] [Related]
16. Estimating human drug oral absorption kinetics from Caco-2 permeability using an absorption-disposition model: model development and evaluation and derivation of analytical solutions for k(a) and F(a). Usansky HH; Sinko PJ J Pharmacol Exp Ther; 2005 Jul; 314(1):391-9. PubMed ID: 15833900 [TBL] [Abstract][Full Text] [Related]
17. Relationships between structure and high-throughput screening permeability of diverse drugs with artificial membranes: application to prediction of Caco-2 cell permeability. Fujikawa M; Ano R; Nakao K; Shimizu R; Akamatsu M Bioorg Med Chem; 2005 Aug; 13(15):4721-32. PubMed ID: 15936203 [TBL] [Abstract][Full Text] [Related]
18. Passive diffusion of polymeric surfactants across lipid bilayers. Mathot F; Schanck A; Van Bambeke F; Ariën A; Noppe M; Brewster M; Préat V J Control Release; 2007 Jul; 120(1-2):79-87. PubMed ID: 17524515 [TBL] [Abstract][Full Text] [Related]
19. Development and evaluation of an in vitro method for prediction of human drug absorption I. Assessment of artificial membrane composition. Corti G; Maestrelli F; Cirri M; Furlanetto S; Mura P Eur J Pharm Sci; 2006 Mar; 27(4):346-53. PubMed ID: 16359848 [TBL] [Abstract][Full Text] [Related]
20. Development of structure-lipid bilayer permeability relationships for peptide-like small organic molecules. Cao Y; Xiang TX; Anderson BD Mol Pharm; 2008; 5(3):371-88. PubMed ID: 18355031 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]