These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 16246957)

  • 1. Oxidative stress and the vascular wall: NADPH oxidases take center stage.
    Keaney JF
    Circulation; 2005 Oct; 112(17):2585-8. PubMed ID: 16246957
    [No Abstract]   [Full Text] [Related]  

  • 2. NAD(P)H oxidase-derived reactive oxygen species as mediators of angiotensin II signaling.
    Hanna IR; Taniyama Y; Szöcs K; Rocic P; Griendling KK
    Antioxid Redox Signal; 2002 Dec; 4(6):899-914. PubMed ID: 12573139
    [TBL] [Abstract][Full Text] [Related]  

  • 3. "Angiotensin II memory" contributes to the development of hypertension and vascular injury via activation of NADPH oxidase.
    Li WJ; Liu Y; Wang JJ; Zhang YL; Lai S; Xia YL; Wang HX; Li HH
    Life Sci; 2016 Mar; 149():18-24. PubMed ID: 26874025
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nox1 overexpression potentiates angiotensin II-induced hypertension and vascular smooth muscle hypertrophy in transgenic mice.
    Dikalova A; Clempus R; Lassègue B; Cheng G; McCoy J; Dikalov S; San Martin A; Lyle A; Weber DS; Weiss D; Taylor WR; Schmidt HH; Owens GK; Lambeth JD; Griendling KK
    Circulation; 2005 Oct; 112(17):2668-76. PubMed ID: 16230485
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Vascular smooth muscle cell NAD(P)H oxidase activity during the development of hypertension: Effect of angiotensin II and role of insulinlike growth factor-1 receptor transactivation.
    Cruzado MC; Risler NR; Miatello RM; Yao G; Schiffrin EL; Touyz RM
    Am J Hypertens; 2005 Jan; 18(1):81-7. PubMed ID: 15691621
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Roles of endothelial oxidases in endothelium-derived hyperpolarizing factor responses in mice.
    Takaki A; Morikawa K; Murayama Y; Yamagishi H; Hosoya M; Ohashi J; Shimokawa H
    J Cardiovasc Pharmacol; 2008 Dec; 52(6):510-7. PubMed ID: 19034034
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microsomal prostaglandin synthase-1-derived prostaglandin E2 protects against angiotensin II-induced hypertension via inhibition of oxidative stress.
    Jia Z; Guo X; Zhang H; Wang MH; Dong Z; Yang T
    Hypertension; 2008 Nov; 52(5):952-9. PubMed ID: 18824665
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lysozyme M-positive monocytes mediate angiotensin II-induced arterial hypertension and vascular dysfunction.
    Wenzel P; Knorr M; Kossmann S; Stratmann J; Hausding M; Schuhmacher S; Karbach SH; Schwenk M; Yogev N; Schulz E; Oelze M; Grabbe S; Jonuleit H; Becker C; Daiber A; Waisman A; Münzel T
    Circulation; 2011 Sep; 124(12):1370-81. PubMed ID: 21875910
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Toll-like receptor 4 mutation protects obese mice against endothelial dysfunction by decreasing NADPH oxidase isoforms 1 and 4.
    Liang CF; Liu JT; Wang Y; Xu A; Vanhoutte PM
    Arterioscler Thromb Vasc Biol; 2013 Apr; 33(4):777-84. PubMed ID: 23413427
    [TBL] [Abstract][Full Text] [Related]  

  • 10. NADPH oxidase mediates angiotensin II-induced endothelin-1 expression in vascular adventitial fibroblasts.
    An SJ; Boyd R; Zhu M; Chapman A; Pimentel DR; Wang HD
    Cardiovasc Res; 2007 Sep; 75(4):702-9. PubMed ID: 17391658
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Angiotensin II attenuates endothelium-dependent responses in the cerebral microcirculation through nox-2-derived radicals.
    Girouard H; Park L; Anrather J; Zhou P; Iadecola C
    Arterioscler Thromb Vasc Biol; 2006 Apr; 26(4):826-32. PubMed ID: 16439707
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Mechanism of vascular endothelial dysfunction induced by hypertension].
    Kawata H
    Nihon Rinsho; 2004 Mar; 62 Suppl 3():38-42. PubMed ID: 15171338
    [No Abstract]   [Full Text] [Related]  

  • 13. Suppression of oxidative stress in the endothelium and vascular wall.
    Jiang F; Drummond GR; Dusting GJ
    Endothelium; 2004; 11(2):79-88. PubMed ID: 15370067
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reduced levels of cyclic AMP contribute to the enhanced oxidative stress in vascular smooth muscle cells from spontaneously hypertensive rats.
    Saha S; Li Y; Anand-Srivastava MB
    Can J Physiol Pharmacol; 2008 Apr; 86(4):190-8. PubMed ID: 18418428
    [TBL] [Abstract][Full Text] [Related]  

  • 15. RNA silencing in vivo reveals role of p22phox in rat angiotensin slow pressor response.
    Modlinger P; Chabrashvili T; Gill PS; Mendonca M; Harrison DG; Griendling KK; Li M; Raggio J; Wellstein A; Chen Y; Welch WJ; Wilcox CS
    Hypertension; 2006 Feb; 47(2):238-44. PubMed ID: 16391171
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The sources of oxidative stress in the vessel wall.
    Wolin MS; Ahmad M; Gupte SA
    Kidney Int; 2005 May; 67(5):1659-61. PubMed ID: 15840006
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Endothelial NADPH oxidases: which NOX to target in vascular disease?
    Drummond GR; Sobey CG
    Trends Endocrinol Metab; 2014 Sep; 25(9):452-63. PubMed ID: 25066192
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Physiology and pathophysiology of vascular signaling controlled by guanosine 3',5'-cyclic monophosphate-dependent protein kinase [corrected].
    Münzel T; Feil R; Mülsch A; Lohmann SM; Hofmann F; Walter U
    Circulation; 2003 Nov; 108(18):2172-83. PubMed ID: 14597579
    [No Abstract]   [Full Text] [Related]  

  • 19. NADPH oxidases, reactive oxygen species, and hypertension: clinical implications and therapeutic possibilities.
    Paravicini TM; Touyz RM
    Diabetes Care; 2008 Feb; 31 Suppl 2():S170-80. PubMed ID: 18227481
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Oxidative stress and vascular dysfunction in hypertension].
    Yoshizumi M
    Nihon Rinsho; 2004 Mar; 62 Suppl 3():43-7. PubMed ID: 15171339
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.