BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

524 related articles for article (PubMed ID: 16246965)

  • 1. Selective activation of inflammatory pathways by intermittent hypoxia in obstructive sleep apnea syndrome.
    Ryan S; Taylor CT; McNicholas WT
    Circulation; 2005 Oct; 112(17):2660-7. PubMed ID: 16246965
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Predictors of elevated nuclear factor-kappaB-dependent genes in obstructive sleep apnea syndrome.
    Ryan S; Taylor CT; McNicholas WT
    Am J Respir Crit Care Med; 2006 Oct; 174(7):824-30. PubMed ID: 16840748
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cardiovascular disease in obstructive sleep apnoea syndrome: the role of intermittent hypoxia and inflammation.
    Garvey JF; Taylor CT; McNicholas WT
    Eur Respir J; 2009 May; 33(5):1195-205. PubMed ID: 19407053
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of intermittent hypoxia on the signal transduction pathways to inflammatory response and circadian clock regulation.
    Burioka N; Koyanagi S; Fukuoka Y; Okazaki F; Fujioka T; Kusunose N; Endo M; Suyama H; Chikumi H; Ohdo S; Shimizu E
    Life Sci; 2009 Aug; 85(9-10):372-8. PubMed ID: 19616563
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A pro-inflammatory role for nuclear factor kappa B in childhood obstructive sleep apnea syndrome.
    Israel LP; Benharoch D; Gopas J; Goldbart AD
    Sleep; 2013 Dec; 36(12):1947-55. PubMed ID: 24293770
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Mechanisms of cardiovascular damage in obstructive sleep apnea].
    Torre-Bouscoulet L; Castorena-Maldonado A; Sada-Ovalle I; Meza-Vargas MS
    Rev Invest Clin; 2008; 60(6):502-16. PubMed ID: 19378837
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Propofol selectively inhibits nuclear factor-κB activity by suppressing p38 mitogen-activated protein kinase signaling in human EA.hy926 endothelial cells during intermittent hypoxia/reoxygenation.
    Li D; Wang C; Li N; Zhang L
    Mol Med Rep; 2014 Apr; 9(4):1460-6. PubMed ID: 24535078
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A critical role for p38 map kinase in NF-kappaB signaling during intermittent hypoxia/reoxygenation.
    Ryan S; McNicholas WT; Taylor CT
    Biochem Biophys Res Commun; 2007 Apr; 355(3):728-33. PubMed ID: 17316568
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of chronic continual- and intermittent hypoxia-induced systemic inflammation on the cardiovascular system in rats.
    Xu XM; Yao D; Cai XD; Ding C; Lin QD; Wang LX; Huang XY
    Sleep Breath; 2015 May; 19(2):677-84. PubMed ID: 25395264
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chronic obstructive pulmonary disease and obstructive sleep apnea: overlaps in pathophysiology, systemic inflammation, and cardiovascular disease.
    McNicholas WT
    Am J Respir Crit Care Med; 2009 Oct; 180(8):692-700. PubMed ID: 19628778
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Increased serum levels of C-reactive protein and matrix metalloproteinase-9 in obstructive sleep apnea syndrome.
    Ye J; Liu H; Li Y; Liu X; Zhu JM
    Chin Med J (Engl); 2007 Sep; 120(17):1482-6. PubMed ID: 17908454
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Systemic inflammation: a key factor in the pathogenesis of cardiovascular complications in obstructive sleep apnoea syndrome?
    Ryan S; Taylor CT; McNicholas WT
    Thorax; 2009 Jul; 64(7):631-6. PubMed ID: 19561283
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adipose tissue is influenced by hypoxia of obstructive sleep apnea syndrome independent of obesity.
    Thorn CE; Knight B; Pastel E; McCulloch LJ; Patel B; Shore AC; Kos K
    Diabetes Metab; 2017 Jun; 43(3):240-247. PubMed ID: 28131740
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The role inflammatory response genes in obstructive sleep apnea syndrome: a review.
    de Lima FF; Mazzotti DR; Tufik S; Bittencourt L
    Sleep Breath; 2016 Mar; 20(1):331-8. PubMed ID: 26201496
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Sleep apnea syndromes and cardiovascular disease].
    Bounhoure JP; Galinier M; Didier A; Leophonte P
    Bull Acad Natl Med; 2005 Mar; 189(3):445-59; discussion 460-4. PubMed ID: 16149210
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Intermittent hypoxia and activation of inflammatory molecular pathways in OSAS.
    Ryan S; McNicholas WT
    Arch Physiol Biochem; 2008 Oct; 114(4):261-6. PubMed ID: 18946786
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Association of elevated levels of vascular endothelial growth factor in obstructive sleep apnea syndrome with patient age rather than with obstructive sleep apnea syndrome severity.
    Peled N; Shitrit D; Bendayan D; Peled E; Kramer MR
    Respiration; 2007; 74(1):50-5. PubMed ID: 16954652
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Impact of Intermittent Hypoxemia on Left Atrial Remodeling in Patients with Obstructive Sleep Apnea Syndrome.
    Chen YL; Chen YC; Wang HT; Chang YT; Fang YN; Hsueh S; Liu WH; Lin PT; Hsu PY; Su MC; Huang KT; Lin MC
    Life (Basel); 2022 Jan; 12(2):. PubMed ID: 35207436
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of nCPAP therapy on cardiorespiratory outcomes in obstructive sleep apnea syndrome: compliance and technological advancements.
    Toraldo DM; De Nuccio F; Nicolardi G
    Expert Rev Respir Med; 2011 Feb; 5(1):41-7. PubMed ID: 21348585
    [TBL] [Abstract][Full Text] [Related]  

  • 20. OSAS-related inflammatory mechanisms of liver injury in nonalcoholic fatty liver disease.
    Paschetta E; Belci P; Alisi A; Liccardo D; Cutrera R; Musso G; Nobili V
    Mediators Inflamm; 2015; 2015():815721. PubMed ID: 25873773
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 27.