These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
150 related articles for article (PubMed ID: 16247731)
1. The accumulation of abundant soluble proteins changes early in the development of the primary roots of maize (Zea mays L.). Hochholdinger F; Woll K; Guo L; Schnable PS Proteomics; 2005 Dec; 5(18):4885-93. PubMed ID: 16247731 [TBL] [Abstract][Full Text] [Related]
2. Comparative proteome analyses of maize (Zea mays L.) primary roots prior to lateral root initiation reveal differential protein expression in the lateral root initiation mutant rum1. Liu Y; Lamkemeyer T; Jakob A; Mi G; Zhang F; Nordheim A; Hochholdinger F Proteomics; 2006 Aug; 6(15):4300-8. PubMed ID: 16819721 [TBL] [Abstract][Full Text] [Related]
3. Regulation of the pericycle proteome in maize (Zea mays L.) primary roots by RUM1 which is required for lateral root initiation. Liu Y; von Behrens I; Muthreich N; Schütz W; Nordheim A; Hochholdinger F Eur J Cell Biol; 2010; 89(2-3):236-41. PubMed ID: 19962783 [TBL] [Abstract][Full Text] [Related]
4. Analysis of nonadditive protein accumulation in young primary roots of a maize (Zea mays L.) F(1)-hybrid compared to its parental inbred lines. Hoecker N; Lamkemeyer T; Sarholz B; Paschold A; Fladerer C; Madlung J; Wurster K; Stahl M; Piepho HP; Nordheim A; Hochholdinger F Proteomics; 2008 Sep; 8(18):3882-94. PubMed ID: 18704907 [TBL] [Abstract][Full Text] [Related]
5. Lateral roots affect the proteome of the primary root of maize (Zea mays L.). Hochholdinger F; Guo L; Schnable PS Plant Mol Biol; 2004 Oct; 56(3):397-412. PubMed ID: 15604752 [TBL] [Abstract][Full Text] [Related]
6. Tissue specific control of the maize (Zea mays L.) embryo, cortical parenchyma, and stele proteomes by RUM1 which regulates seminal and lateral root initiation. Saleem M; Lamkemeyer T; Schützenmeister A; Fladerer C; Piepho HP; Nordheim A; Hochholdinger F J Proteome Res; 2009 May; 8(5):2285-97. PubMed ID: 19267494 [TBL] [Abstract][Full Text] [Related]
7. Proteomic analysis of shoot-borne root initiation in maize (Zea mays L.). Sauer M; Jakob A; Nordheim A; Hochholdinger F Proteomics; 2006 Apr; 6(8):2530-41. PubMed ID: 16521151 [TBL] [Abstract][Full Text] [Related]
9. The proteome of maize leaves: use of gene sequences and expressed sequence tag data for identification of proteins with peptide mass fingerprints. Porubleva L; Vander Velden K; Kothari S; Oliver DJ; Chitnis PR Electrophoresis; 2001 May; 22(9):1724-38. PubMed ID: 11425228 [TBL] [Abstract][Full Text] [Related]
10. Regulation of the maize (Zea mays L.) embryo proteome by RTCS which controls seminal root initiation. Muthreich N; Schützenmeister A; Schütz W; Madlung J; Krug K; Nordheim A; Piepho HP; Hochholdinger F Eur J Cell Biol; 2010; 89(2-3):242-9. PubMed ID: 19962210 [TBL] [Abstract][Full Text] [Related]
11. Proteomic analysis of roots growth and metabolic changes under phosphorus deficit in maize (Zea mays L.) plants. Li K; Xu C; Zhang K; Yang A; Zhang J Proteomics; 2007 May; 7(9):1501-12. PubMed ID: 17407179 [TBL] [Abstract][Full Text] [Related]
12. Comparative proteome analyses of phosphorus responses in maize (Zea mays L.) roots of wild-type and a low-P-tolerant mutant reveal root characteristics associated with phosphorus efficiency. Li K; Xu C; Li Z; Zhang K; Yang A; Zhang J Plant J; 2008 Sep; 55(6):927-39. PubMed ID: 18489707 [TBL] [Abstract][Full Text] [Related]
13. Proteome analysis of rice uppermost internodes at the milky stage. Yang P; Liang Y; Shen S; Kuang T Proteomics; 2006 Jun; 6(11):3330-8. PubMed ID: 16637012 [TBL] [Abstract][Full Text] [Related]
14. Proteome analysis of maize roots reveals that oxidative stress is a main contributing factor to plant arsenic toxicity. Requejo R; Tena M Phytochemistry; 2005 Jul; 66(13):1519-28. PubMed ID: 15964037 [TBL] [Abstract][Full Text] [Related]
15. Maize response to acute arsenic toxicity as revealed by proteome analysis of plant shoots. Requejo R; Tena M Proteomics; 2006 Apr; 6 Suppl 1():S156-62. PubMed ID: 16534746 [TBL] [Abstract][Full Text] [Related]
16. Nonadditive protein accumulation patterns in Maize (Zea mays L.) hybrids during embryo development. Marcon C; Schützenmeister A; Schütz W; Madlung J; Piepho HP; Hochholdinger F J Proteome Res; 2010 Dec; 9(12):6511-22. PubMed ID: 20973536 [TBL] [Abstract][Full Text] [Related]
17. Development of an integrated approach for evaluation of 2-D gel image analysis: impact of multiple proteins in single spots on comparative proteomics in conventional 2-D gel/MALDI workflow. Yang Y; Thannhauser TW; Li L; Zhang S Electrophoresis; 2007 Jun; 28(12):2080-94. PubMed ID: 17486657 [TBL] [Abstract][Full Text] [Related]
18. Conserved and unique features of the maize (Zea mays L.) root hair proteome. Nestler J; Schütz W; Hochholdinger F J Proteome Res; 2011 May; 10(5):2525-37. PubMed ID: 21417484 [TBL] [Abstract][Full Text] [Related]
19. Transcriptomic and proteomic analyses of pericycle cells of the maize primary root. Dembinsky D; Woll K; Saleem M; Liu Y; Fu Y; Borsuk LA; Lamkemeyer T; Fladerer C; Madlung J; Barbazuk B; Nordheim A; Nettleton D; Schnable PS; Hochholdinger F Plant Physiol; 2007 Nov; 145(3):575-88. PubMed ID: 17766395 [TBL] [Abstract][Full Text] [Related]
20. An approach to identify cold-induced low-abundant proteins in rice leaf. Lee DG; Ahsan N; Lee SH; Kang KY; Lee JJ; Lee BH C R Biol; 2007 Mar; 330(3):215-25. PubMed ID: 17434115 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]