BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

293 related articles for article (PubMed ID: 16247734)

  • 1. Proteomic analysis of organ-specific post-translational lysine-acetylation and -methylation in mice by use of anti-acetyllysine and -methyllysine mouse monoclonal antibodies.
    Iwabata H; Yoshida M; Komatsu Y
    Proteomics; 2005 Dec; 5(18):4653-64. PubMed ID: 16247734
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Generation and characterization of pan-specific anti-acetyllysine antibody.
    Xu W; Zhao S
    Methods Mol Biol; 2013; 981():137-50. PubMed ID: 23381859
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comprehensive mapping of post-translational modifications on synaptic, nuclear, and histone proteins in the adult mouse brain.
    Tweedie-Cullen RY; Reck JM; Mansuy IM
    J Proteome Res; 2009 Nov; 8(11):4966-82. PubMed ID: 19737024
    [TBL] [Abstract][Full Text] [Related]  

  • 4. PLMLA: prediction of lysine methylation and lysine acetylation by combining multiple features.
    Shi SP; Qiu JD; Sun XY; Suo SB; Huang SY; Liang RP
    Mol Biosyst; 2012 Apr; 8(5):1520-7. PubMed ID: 22402705
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamics and regulation of lysine-acetylation during one-cell stage mouse embryos.
    Matsubara K; Lee AR; Kishigami S; Ito A; Matsumoto K; Chi H; Nishino N; Yoshida M; Hosoi Y
    Biochem Biophys Res Commun; 2013 Apr; 434(1):1-7. PubMed ID: 23567968
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A combination of posttranslational modifications is responsible for the production of neuronal alpha-tubulin heterogeneity.
    Eddé B; Rossier J; Le Caer JP; Berwald-Netter Y; Koulakoff A; Gros F; Denoulet P
    J Cell Biochem; 1991 Jun; 46(2):134-42. PubMed ID: 1680872
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Drosophila ACT88F indirect flight muscle-specific actin is not N-terminally acetylated: a mutation in N-terminal processing affects actin function.
    Schmitz S; Clayton J; Nongthomba U; Prinz H; Veigel C; Geeves M; Sparrow J
    J Mol Biol; 2000 Feb; 295(5):1201-10. PubMed ID: 10653697
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lysine acetylation and the bromodomain: a new partnership for signaling.
    Yang XJ
    Bioessays; 2004 Oct; 26(10):1076-87. PubMed ID: 15382140
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The diversity of lysine-acetylated proteins in Escherichia coli.
    Yu BJ; Kim JA; Moon JH; Ryu SE; Pan JG
    J Microbiol Biotechnol; 2008 Sep; 18(9):1529-36. PubMed ID: 18852508
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Four different clones of mouse anti-acetyllysine monoclonal antibodies having different recognition properties share a common immunoglobulin framework structure.
    Komatsu Y; Yukutake Y; Yoshida M
    J Immunol Methods; 2003 Jan; 272(1-2):161-75. PubMed ID: 12505721
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Maintenance of open DNA base pairs through histone acetylated lysine-purine interaction leading to transcriptional activation: a proposed mechanism.
    Georghiou S; Ababneh AM
    Int J Mol Med; 2005 Nov; 16(5):911-7. PubMed ID: 16211263
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Post-translational modifications of Desulfovibrio vulgaris Hildenborough sulfate reduction pathway proteins.
    Gaucher SP; Redding AM; Mukhopadhyay A; Keasling JD; Singh AK
    J Proteome Res; 2008 Jun; 7(6):2320-31. PubMed ID: 18416566
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Site-specific mapping and time-resolved monitoring of lysine methylation by high-resolution NMR spectroscopy.
    Theillet FX; Liokatis S; Jost JO; Bekei B; Rose HM; Binolfi A; Schwarzer D; Selenko P
    J Am Chem Soc; 2012 May; 134(18):7616-9. PubMed ID: 22519908
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Methylation-acetylation interplay activates p53 in response to DNA damage.
    Ivanov GS; Ivanova T; Kurash J; Ivanov A; Chuikov S; Gizatullin F; Herrera-Medina EM; Rauscher F; Reinberg D; Barlev NA
    Mol Cell Biol; 2007 Oct; 27(19):6756-69. PubMed ID: 17646389
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Acetyl-methyllysine marks chromatin at active transcription start sites.
    Lu-Culligan WJ; Connor LJ; Xie Y; Ekundayo BE; Rose BT; Machyna M; Pintado-Urbanc AP; Zimmer JT; Vock IW; Bhanu NV; King MC; Garcia BA; Bleichert F; Simon MD
    Nature; 2023 Oct; 622(7981):173-179. PubMed ID: 37731000
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Specificity of protein lysine methyltransferases and methods for detection of lysine methylation of non-histone proteins.
    Rathert P; Dhayalan A; Ma H; Jeltsch A
    Mol Biosyst; 2008 Dec; 4(12):1186-90. PubMed ID: 19396382
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A method to distinguish between lysine acetylation and lysine methylation from protein sequences.
    Shi SP; Qiu JD; Sun XY; Suo SB; Huang SY; Liang RP
    J Theor Biol; 2012 Oct; 310():223-30. PubMed ID: 22796329
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Impact of post-translational modifications of proteins on the inflammatory process.
    Ito K
    Biochem Soc Trans; 2007 Apr; 35(Pt 2):281-3. PubMed ID: 17371260
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Partial acetylation of lysine residues improves intraprotein cross-linking.
    Guo X; Bandyopadhyay P; Schilling B; Young MM; Fujii N; Aynechi T; Guy RK; Kuntz ID; Gibson BW
    Anal Chem; 2008 Feb; 80(4):951-60. PubMed ID: 18201069
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Post-translational modifications of Trypanosoma cruzi histone H4.
    da Cunha JP; Nakayasu ES; de Almeida IC; Schenkman S
    Mol Biochem Parasitol; 2006 Dec; 150(2):268-77. PubMed ID: 17010453
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.