These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 16248302)

  • 1. Determining effective centroid position in biomechanical testing: a technique for simplifying whole bone analysis.
    Whan G; Runciman RJ; Hurtig M
    J Biomech Eng; 2005 Oct; 127(5):736-41. PubMed ID: 16248302
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Calculation of tibial loading using strain gauges.
    Funk JR; Crandall JR
    Biomed Sci Instrum; 2006; 42():160-5. PubMed ID: 16817602
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stiff and strong compressive properties are associated with brittle post-yield behavior in equine compact bone material.
    Les CM; Stover SM; Keyak JH; Taylor KT; Kaneps AJ
    J Orthop Res; 2002 May; 20(3):607-14. PubMed ID: 12038638
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development and testing of a modular strain measurement clip.
    Whan G; Phillips J; Bullock S; Runciman RJ; Pearce S; Hurtig M
    J Biomech; 2003 Nov; 36(11):1669-74. PubMed ID: 14522208
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interrelationship of trabecular mechanical and microstructural properties in sheep trabecular bone.
    Mittra E; Rubin C; Qin YX
    J Biomech; 2005 Jun; 38(6):1229-37. PubMed ID: 15863107
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fatigue behavior of the equine third metacarpus: mechanical property analysis.
    Gibson VA; Stover SM; Martin RB; Gibeling JC; Willits NH; Gustafson MB; Griffin LV
    J Orthop Res; 1995 Nov; 13(6):861-8. PubMed ID: 8544022
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The dependence between the strength and stiffness of cancellous and cortical bone tissue for tension and compression: extension of a unifying principle.
    Yeni YN; Dong XN; Fyhrie DP; Les CM
    Biomed Mater Eng; 2004; 14(3):303-10. PubMed ID: 15299242
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Validation of a finite element model of the human metacarpal.
    Barker DS; Netherway DJ; Krishnan J; Hearn TC
    Med Eng Phys; 2005 Mar; 27(2):103-13. PubMed ID: 15642506
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Correlation of mechanical properties within the equine third metacarpal with trabecular bending and multi-density micro-computed tomography data.
    Leahy PD; Smith BS; Easton KL; Kawcak CE; Eickhoff JC; Shetye SS; Puttlitz CM
    Bone; 2010 Apr; 46(4):1108-13. PubMed ID: 20079474
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Can extra-articular strains be used to measure facet contact forces in the lumbar spine? An in-vitro biomechanical study.
    Zhu QA; Park YB; Sjovold SG; Niosi CA; Wilson DC; Cripton PA; Oxland TR
    Proc Inst Mech Eng H; 2008 Feb; 222(2):171-84. PubMed ID: 18441753
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The biomechanics of human femurs in axial and torsional loading: comparison of finite element analysis, human cadaveric femurs, and synthetic femurs.
    Papini M; Zdero R; Schemitsch EH; Zalzal P
    J Biomech Eng; 2007 Feb; 129(1):12-9. PubMed ID: 17227093
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of mechanical and ultrasound elastic modulus of ovine tibial cortical bone.
    Grant CA; Wilson LJ; Langton C; Epari D
    Med Eng Phys; 2014 Jul; 36(7):869-74. PubMed ID: 24793408
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development and validation of a series of three-dimensional finite element models of the equine metacarpus.
    Les CM; Keyak JH; Stover SM; Taylor KT
    J Biomech; 1997 Jul; 30(7):737-42. PubMed ID: 9239555
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prediction of Young׳s modulus of trabeculae in microscale using macro-scale׳s relationships between bone density and mechanical properties.
    Cyganik Ł; Binkowski M; Kokot G; Rusin T; Popik P; Bolechała F; Nowak R; Wróbel Z; John A
    J Mech Behav Biomed Mater; 2014 Aug; 36():120-34. PubMed ID: 24837330
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Age dependency of the biaxial biomechanical behavior of human abdominal aorta.
    Vande Geest JP; Sacks MS; Vorp DA
    J Biomech Eng; 2004 Dec; 126(6):815-22. PubMed ID: 15796340
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Relationship between CT intensity, micro-architecture and mechanical properties of porcine vertebral cancellous bone.
    Teo JC; Si-Hoe KM; Keh JE; Teoh SH
    Clin Biomech (Bristol, Avon); 2006 Mar; 21(3):235-44. PubMed ID: 16356612
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ex vivo simulation of in vivo strain distributions in the equine metacarpus.
    Les CM; Stover SM; Taylor KT; Keyak JH; Willits NH
    Equine Vet J; 1998 May; 30(3):260-6. PubMed ID: 9622329
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The modified super-ellipsoid yield criterion for human trabecular bone.
    Bayraktar HH; Gupta A; Kwon RY; Papadopoulos P; Keaveny TM
    J Biomech Eng; 2004 Dec; 126(6):677-84. PubMed ID: 15796326
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ultrasonic transmission velocity and single photon absorptiometric measurement of metacarpal bone strength: an in vitro study in the horse.
    McCarhey RN; Jeffcott LB; McCartney RN
    Equine Vet J Suppl; 1988 Sep; (6):80-7. PubMed ID: 9079067
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The mechanical consequences of variation in the mineral content of bone.
    Currey JD
    J Biomech; 1969 Mar; 2(1):1-11. PubMed ID: 16335107
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.