These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

257 related articles for article (PubMed ID: 16248308)

  • 21. An in vivo method for measuring turbulence in mechanical prosthesis leakage jets.
    Travis BR; Christensen TD; Smerup M; Olsen MS; Hasenkam JM; Nygaard H
    J Biomech Eng; 2004 Feb; 126(1):26-35. PubMed ID: 15171126
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Numerical analysis of blood flow through an elliptic stenosis using large eddy simulation.
    Jabir E; Lal SA
    Proc Inst Mech Eng H; 2016 Aug; 230(8):709-26. PubMed ID: 27146288
    [TBL] [Abstract][Full Text] [Related]  

  • 23. In-vivo turbulent stresses of bileaflet prosthesis leakage jets.
    Travis BR; Christensen TD; Smerup M; Olsen MS; Hasenkam JM; Nygaard H
    J Heart Valve Dis; 2005 Sep; 14(5):644-56. PubMed ID: 16245504
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Numerical and experimental investigations of pulsatile blood flow pattern through a dysfunctional mechanical heart valve.
    Smadi O; Hassan I; Pibarot P; Kadem L
    J Biomech; 2010 May; 43(8):1565-72. PubMed ID: 20188372
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A novel flex-stretch-flow bioreactor for the study of engineered heart valve tissue mechanobiology.
    Engelmayr GC; Soletti L; Vigmostad SC; Budilarto SG; Federspiel WJ; Chandran KB; Vorp DA; Sacks MS
    Ann Biomed Eng; 2008 May; 36(5):700-12. PubMed ID: 18253834
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Laminar-to-turbulence and relaminarization zones detection by simulation of low Reynolds number turbulent blood flow in large stenosed arteries.
    Tabe R; Ghalichi F; Hossainpour S; Ghasemzadeh K
    Biomed Mater Eng; 2016 Aug; 27(2-3):119-29. PubMed ID: 27567769
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Pressure and flow fields in the hinge region of bileaflet mechanical heart valves.
    Gao ZB; Hosein N; Dai FF; Hwang NH
    J Heart Valve Dis; 1999 Mar; 8(2):197-205. PubMed ID: 10224581
    [TBL] [Abstract][Full Text] [Related]  

  • 28. An experimentally derived stress resultant shell model for heart valve dynamic simulations.
    Kim H; Chandran KB; Sacks MS; Lu J
    Ann Biomed Eng; 2007 Jan; 35(1):30-44. PubMed ID: 17089074
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Turbulence detection in a stenosed artery bifurcation by numerical simulation of pulsatile blood flow using the low-Reynolds number turbulence model.
    Ghalichi F; Deng X
    Biorheology; 2003; 40(6):637-54. PubMed ID: 14610313
    [TBL] [Abstract][Full Text] [Related]  

  • 30. An analysis of turbulent shear stresses in leakage flow through a bileaflet mechanical prostheses.
    Travis BR; Leo HL; Shah PA; Frakes DH; Yoganathan AP
    J Biomech Eng; 2002 Apr; 124(2):155-65. PubMed ID: 12002124
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Computational simulations of flow dynamics and blood damage through a bileaflet mechanical heart valve scaled to pediatric size and flow.
    Yun BM; McElhinney DB; Arjunon S; Mirabella L; Aidun CK; Yoganathan AP
    J Biomech; 2014 Sep; 47(12):3169-77. PubMed ID: 25011622
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Computational fluid dynamics study of a protruded-hinge bileaflet mechanical heart valve.
    Wang J; Yao H; Lim CJ; Zhao Y; Yeo TJ; Hwang NH
    J Heart Valve Dis; 2001 Mar; 10(2):254-262; discussion 263. PubMed ID: 11297213
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Flow-induced platelet activation and damage accumulation in a mechanical heart valve: numerical studies.
    Alemu Y; Bluestein D
    Artif Organs; 2007 Sep; 31(9):677-88. PubMed ID: 17725695
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A comparison of flow field structures of two tri-leaflet polymeric heart valves.
    Leo HL; Simon H; Carberry J; Lee SC; Yoganathan AP
    Ann Biomed Eng; 2005 Apr; 33(4):429-43. PubMed ID: 15909649
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Numerical simulation of steady flow in a two-dimensional total artificial heart model.
    Kim SH; Chandran KB; Chen CJ
    J Biomech Eng; 1992 Nov; 114(4):497-503. PubMed ID: 1487902
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The 12 cc Penn State pulsatile pediatric ventricular assist device: fluid dynamics associated with valve selection.
    Cooper BT; Roszelle BN; Long TC; Deutsch S; Manning KB
    J Biomech Eng; 2008 Aug; 130(4):041019. PubMed ID: 18601461
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Physics-driven CFD modeling of complex anatomical cardiovascular flows-a TCPC case study.
    Pekkan K; de Zélicourt D; Ge L; Sotiropoulos F; Frakes D; Fogel MA; Yoganathan AP
    Ann Biomed Eng; 2005 Mar; 33(3):284-300. PubMed ID: 15868719
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Unsteady effects on the flow across tilting disk valves.
    Rosenfeld M; Avrahami I; Einav S
    J Biomech Eng; 2002 Feb; 124(1):21-9. PubMed ID: 11871601
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A D-Shaped Bileaflet Bioprosthesis which Replicates Physiological Left Ventricular Flow Patterns.
    Tan SG; Kim S; Hon JK; Leo HL
    PLoS One; 2016; 11(6):e0156580. PubMed ID: 27258099
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The effect of tip angle on cavitation potential during closure of a bileaflet prosthesis model.
    Zhang P; Yeo JH; Qian P; Hwang NH
    J Heart Valve Dis; 2007 Jul; 16(4):430-9. PubMed ID: 17702370
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.