These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Simultaneous quantification of sinigrin, sinalbin, and anionic glucosinolate hydrolysis products in Brassica juncea and Sinapis alba seed extracts using ion chromatography. Popova IE; Morra MJ J Agric Food Chem; 2014 Nov; 62(44):10687-93. PubMed ID: 25314611 [TBL] [Abstract][Full Text] [Related]
4. Supercritical fluid chromatography as a method of analysis for the determination of 4-hydroxybenzylglucosinolate degradation products. Buskov S; Hasselstrøm J; Olsen CE; Sørensen H; Sørensen JC; Sørensen S J Biochem Biophys Methods; 2000 Jul; 43(1-3):157-74. PubMed ID: 10869674 [TBL] [Abstract][Full Text] [Related]
5. Supercritical fluid chromatography of myrosinase reaction products in ground yellow mustard seed oil. Choubdar N; Li S; Holley RA J Food Sci; 2010 May; 75(4):C341-5. PubMed ID: 20546392 [TBL] [Abstract][Full Text] [Related]
6. In vitro metabolic conversion of the organic breakdown products of glucosinolate to goitrogenic thiocyanate anion. Lee J; Kwon H J Sci Food Agric; 2015 Aug; 95(11):2244-51. PubMed ID: 25271103 [TBL] [Abstract][Full Text] [Related]
7. Glutamine as an Ammonia Donor in Catabolism of the Glucosinolate, Sinalbin, in Biosynthesis of 4-Hydroxybenzylamine. Frandsen HB; Sørensen JC; Petersen IL; Sørensen H J Nat Prod; 2020 Feb; 83(2):179-184. PubMed ID: 32052633 [TBL] [Abstract][Full Text] [Related]
8. Herbicidal activity of glucosinolate degradation products in fermented meadowfoam ( Limnanthes alba ) seed meal. Stevens JF; Reed RL; Alber S; Pritchett L; Machado S J Agric Food Chem; 2009 Mar; 57(5):1821-6. PubMed ID: 19170637 [TBL] [Abstract][Full Text] [Related]
9. Characterization of a calcium-soluble protein fraction from yellow mustard (Sinapis alba) seed meal with potential application as an additive to calcium-rich drinks. Aluko RE; Reaney M; McIntosh T; Ouellet F; Katepa-Mupondwa F J Agric Food Chem; 2004 Sep; 52(19):6030-4. PubMed ID: 15366859 [TBL] [Abstract][Full Text] [Related]
10. Antiproliferative, Proapoptotic, Antioxidant and Antimicrobial Effects of Sinapis nigra L. and Sinapis alba L. Extracts. Boscaro V; Boffa L; Binello A; Amisano G; Fornasero S; Cravotto G; Gallicchio M Molecules; 2018 Nov; 23(11):. PubMed ID: 30453590 [TBL] [Abstract][Full Text] [Related]
11. Identification and phytotoxicity of a new glucosinolate breakdown product from Meadowfoam (Limnanthes alba) seed meal. Intanon S; Reed RL; Stevens JF; Hulting AG; Mallory-Smith CA J Agric Food Chem; 2014 Jul; 62(30):7423-9. PubMed ID: 24998843 [TBL] [Abstract][Full Text] [Related]
12. HPLC-based kinetics assay facilitates analysis of systems with multiple reaction products and thermal enzyme denaturation. Klingaman CA; Wagner MJ; Brown JR; Klecker JB; Pauley EH; Noldner CJ; Mays JR Anal Biochem; 2017 Jan; 516():37-47. PubMed ID: 27742213 [TBL] [Abstract][Full Text] [Related]
13. Screening crucifer seeds as sources of specific intact glucosinolates using ion-pair high-performance liquid chromatography negative ion electrospray mass spectrometry. Bennett RN; Mellon FA; Kroon PA J Agric Food Chem; 2004 Feb; 52(3):428-38. PubMed ID: 14759128 [TBL] [Abstract][Full Text] [Related]
14. Differing mechanisms of simple nitrile formation on glucosinolate degradation in Lepidium sativum and Nasturtium officinale seeds. Williams DJ; Critchley C; Pun S; Chaliha M; O'Hare TJ Phytochemistry; 2009; 70(11-12):1401-9. PubMed ID: 19747700 [TBL] [Abstract][Full Text] [Related]
15. High-performance liquid chromatography-based method to evaluate kinetics of glucosinolate hydrolysis by Sinapis alba myrosinase. Vastenhout KJ; Tornberg RH; Johnson AL; Amolins MW; Mays JR Anal Biochem; 2014 Nov; 465():105-13. PubMed ID: 25068719 [TBL] [Abstract][Full Text] [Related]
16. Inactivation of Thioglucosidase from Marcinkowska M; Jeleń HH Molecules; 2020 Sep; 25(19):. PubMed ID: 32977439 [TBL] [Abstract][Full Text] [Related]
17. A thiocyanate-forming protein generates multiple products upon allylglucosinolate breakdown in Thlaspi arvense. Kuchernig JC; Backenköhler A; Lübbecke M; Burow M; Wittstock U Phytochemistry; 2011 Oct; 72(14-15):1699-709. PubMed ID: 21783213 [TBL] [Abstract][Full Text] [Related]
18. Control of Chhetri P; Dandurand LM; Popova I Plant Dis; 2023 May; 107(5):1491-1498. PubMed ID: 36320132 [TBL] [Abstract][Full Text] [Related]
19. Allelochemicals produced during glucosinolate degradation in soil. Brown PD; Morra MJ; McCaffrey JP; Auld DL; Williams L J Chem Ecol; 1991 Oct; 17(10):2021-34. PubMed ID: 24258495 [TBL] [Abstract][Full Text] [Related]
20. Glucosinolate hydrolysis in Lepidium sativum--identification of the thiocyanate-forming protein. Burow M; Bergner A; Gershenzon J; Wittstock U Plant Mol Biol; 2007 Jan; 63(1):49-61. PubMed ID: 17139450 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]