These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
411 related articles for article (PubMed ID: 16248604)
1. A simple method to predict protein flexibility using secondary chemical shifts. Berjanskii MV; Wishart DS J Am Chem Soc; 2005 Nov; 127(43):14970-1. PubMed ID: 16248604 [TBL] [Abstract][Full Text] [Related]
2. The RCI server: rapid and accurate calculation of protein flexibility using chemical shifts. Berjanskii MV; Wishart DS Nucleic Acids Res; 2007 Jul; 35(Web Server issue):W531-7. PubMed ID: 17485469 [TBL] [Abstract][Full Text] [Related]
3. Accuracy and precision of NMR relaxation experiments and MD simulations for characterizing protein dynamics. Philippopoulos M; Mandel AM; Palmer AG; Lim C Proteins; 1997 Aug; 28(4):481-93. PubMed ID: 9261865 [TBL] [Abstract][Full Text] [Related]
4. Conformational flexibility of a microcrystalline globular protein: order parameters by solid-state NMR spectroscopy. Lorieau JL; McDermott AE J Am Chem Soc; 2006 Sep; 128(35):11505-12. PubMed ID: 16939274 [TBL] [Abstract][Full Text] [Related]
5. NMR: prediction of protein flexibility. Berjanskii M; Wishart DS Nat Protoc; 2006; 1(2):683-8. PubMed ID: 17406296 [TBL] [Abstract][Full Text] [Related]
6. Determinations of 15N chemical shift anisotropy magnitudes in a uniformly 15N,13C-labeled microcrystalline protein by three-dimensional magic-angle spinning nuclear magnetic resonance spectroscopy. Wylie BJ; Franks WT; Rienstra CM J Phys Chem B; 2006 Jun; 110(22):10926-36. PubMed ID: 16771346 [TBL] [Abstract][Full Text] [Related]
7. Site-specific 13C chemical shift anisotropy measurements in a uniformly 15N,13C-labeled microcrystalline protein by 3D magic-angle spinning NMR spectroscopy. Wylie BJ; Franks WT; Graesser DT; Rienstra CM J Am Chem Soc; 2005 Aug; 127(34):11946-7. PubMed ID: 16117526 [TBL] [Abstract][Full Text] [Related]
8. Comparing atomistic simulation data with the NMR experiment: how much can NOEs actually tell us? Zagrovic B; van Gunsteren WF Proteins; 2006 Apr; 63(1):210-8. PubMed ID: 16425239 [TBL] [Abstract][Full Text] [Related]
10. Accurate prediction of protein torsion angles using chemical shifts and sequence homology. Neal S; Berjanskii M; Zhang H; Wishart DS Magn Reson Chem; 2006 Jul; 44 Spec No():S158-67. PubMed ID: 16823900 [TBL] [Abstract][Full Text] [Related]
11. Probing structure in invisible protein states with anisotropic NMR chemical shifts. Vallurupalli P; Hansen DF; Kay LE J Am Chem Soc; 2008 Mar; 130(9):2734-5. PubMed ID: 18257570 [TBL] [Abstract][Full Text] [Related]
12. Enzyme dynamics during catalysis measured by NMR spectroscopy. Kern D; Eisenmesser EZ; Wolf-Watz M Methods Enzymol; 2005; 394():507-24. PubMed ID: 15808235 [TBL] [Abstract][Full Text] [Related]
13. Determination of methyl 13C-15N dipolar couplings in peptides and proteins by three-dimensional and four-dimensional magic-angle spinning solid-state NMR spectroscopy. Helmus JJ; Nadaud PS; Höfer N; Jaroniec CP J Chem Phys; 2008 Feb; 128(5):052314. PubMed ID: 18266431 [TBL] [Abstract][Full Text] [Related]
14. Resonance assignments and secondary structure analysis of E. coli thioredoxin by magic angle spinning solid-state NMR spectroscopy. Marulanda D; Tasayco ML; Cataldi M; Arriaran V; Polenova T J Phys Chem B; 2005 Sep; 109(38):18135-45. PubMed ID: 16853329 [TBL] [Abstract][Full Text] [Related]
16. Probing chemical shifts of invisible states of proteins with relaxation dispersion NMR spectroscopy: how well can we do? Hansen DF; Vallurupalli P; Lundström P; Neudecker P; Kay LE J Am Chem Soc; 2008 Feb; 130(8):2667-75. PubMed ID: 18237174 [TBL] [Abstract][Full Text] [Related]
17. Solution structure and dynamics of integral membrane proteins by NMR: a case study involving the enzyme PagP. Hwang PM; Kay LE Methods Enzymol; 2005; 394():335-50. PubMed ID: 15808227 [TBL] [Abstract][Full Text] [Related]
18. Predicting the redox state and secondary structure of cysteine residues in proteins using NMR chemical shifts. Wang CC; Chen JH; Yin SH; Chuang WJ Proteins; 2006 Apr; 63(1):219-26. PubMed ID: 16444707 [TBL] [Abstract][Full Text] [Related]
19. Simple and accurate determination of global tau(R) in proteins using (13)C or (15)N relaxation data. Mispelter J; Izadi-Pruneyre N; Quiniou E; Adjadj E J Magn Reson; 2000 Mar; 143(1):229-32. PubMed ID: 10698665 [TBL] [Abstract][Full Text] [Related]
20. Interpreting NMR data for beta-peptides using molecular dynamics simulations. Trzesniak D; Glättli A; Jaun B; van Gunsteren WF J Am Chem Soc; 2005 Oct; 127(41):14320-9. PubMed ID: 16218626 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]