These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

239 related articles for article (PubMed ID: 16248644)

  • 21. CH/pi interaction in the packing of the adenine ring in protein structures.
    Chakrabarti P; Samanta U
    J Mol Biol; 1995 Aug; 251(1):9-14. PubMed ID: 7643392
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Role of CH/pi interactions in substrate binding by Escherichia coli beta-galactosidase.
    Spiwok V; Lipovová P; Skálová T; Buchtelová E; Hasek J; Králová B
    Carbohydr Res; 2004 Sep; 339(13):2275-80. PubMed ID: 15337456
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Direct estimate of the strength of conjugation and hyperconjugation by the energy decomposition analysis method.
    Fernández I; Frenking G
    Chemistry; 2006 Apr; 12(13):3617-29. PubMed ID: 16502455
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Conformational structure of gaseous 3-chloropropanoyl chloride by electron diffraction, normal coordinate analysis, and ab initio molecular orbital, and density functional theory calculations.
    Johansen TH; Hagen K
    J Phys Chem A; 2006 Sep; 110(38):11136-44. PubMed ID: 16986848
    [TBL] [Abstract][Full Text] [Related]  

  • 25. CH···π interactions do not contribute to hydrogen transfer catalysis by glycerol dehydratase.
    Liu Y; Gallo AA; Xu W; Bajpai R; Florián J
    J Phys Chem A; 2011 Oct; 115(41):11162-6. PubMed ID: 21888321
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The role of CH/pi interaction in the stabilization of less-soluble diastereomeric salt crystals.
    Saigo K; Kobayashi Y
    Chem Rec; 2007; 7(1):47-56. PubMed ID: 17304592
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The origin of the generalized anomeric effect: possibility of CH/n and CH/pi hydrogen bonds.
    Takahashi O; Yamasaki K; Kohno Y; Ueda K; Suezawa H; Nishio M
    Carbohydr Res; 2009 Jul; 344(10):1225-9. PubMed ID: 19467651
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Quantifying weak hydrogen bonding in uracil and 4-cyano-4'-ethynylbiphenyl: a combined computational and experimental investigation of NMR chemical shifts in the solid state.
    Uldry AC; Griffin JM; Yates JR; Pérez-Torralba M; María MD; Webber AL; Beaumont ML; Samoson A; Claramunt RM; Pickard CJ; Brown SP
    J Am Chem Soc; 2008 Jan; 130(3):945-54. PubMed ID: 18166050
    [TBL] [Abstract][Full Text] [Related]  

  • 29. On the interplay between CH...O and OH...O interactions in determining crystal packing and molecular conformation: an experimental and theoretical charge density study of the fungal secondary metabolite austdiol (C12H12O5).
    Lo Presti L; Soave R; Destro R
    J Phys Chem B; 2006 Mar; 110(12):6405-14. PubMed ID: 16553460
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Does the A.T or G.C base-pair possess enhanced stability? Quantifying the effects of CH...O interactions and secondary interactions on base-pair stability using a phenomenological analysis and ab initio calculations.
    Quinn JR; Zimmerman SC; Del Bene JE; Shavitt I
    J Am Chem Soc; 2007 Jan; 129(4):934-41. PubMed ID: 17243830
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Very long-range effects: cooperativity between anion-pi and hydrogen-bonding interactions.
    Lucas X; Estarellas C; Escudero D; Frontera A; Quiñonero D; Deyà PM
    Chemphyschem; 2009 Sep; 10(13):2256-64. PubMed ID: 19572370
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Analysis of the intermolecular interactions between CH3OCH3, CF3OCH3, CF3OCF3, and CH2F2, CHF3.
    Urata S; Tsuzuki S; Takada A; Mikami M; Uchimaru T; Sekiya A
    J Comput Chem; 2004 Feb; 25(3):447-59. PubMed ID: 14696079
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Calorimetric measurement of the CH/pi interaction involved in the molecular recognition of saccharides by aromatic compounds.
    Bautista-Ibañez L; Ramírez-Gualito K; Quiroz-García B; Rojas-Aguilar A; Cuevas G
    J Org Chem; 2008 Feb; 73(3):849-57. PubMed ID: 18173283
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A new look at the ylidic bond in phosphorus ylides and related compounds: energy decomposition analysis combined with a domain-averaged fermi hole analysis.
    Calhorda MJ; Krapp A; Frenking G
    J Phys Chem A; 2007 Apr; 111(15):2859-69. PubMed ID: 17388399
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Keto-enol tautomerism in crystals of 3-[hydroxy(phenyl)methyl]-2,5,7-trimethyl-2,3-dihydropyrido[3,2-e][1,2]thiazin-4-one 1,1-dioxide and 3-(1-hydroxyethylidene)-2,5,7-trimethyl-2,3-dihydropyrido[3,2-e][1,2]thiazin-4-one 1,1-dioxide.
    Karczmarzyk Z
    Acta Crystallogr C; 2008 Nov; 64(Pt 11):o590-4. PubMed ID: 18989086
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Intermolecular pi-to-pi bonding between stacked aromatic dyads. Experimental and theoretical binding energies and near-IR optical transitions for phenalenyl radical/radical versus radical/cation dimerizations.
    Small D; Zaitsev V; Jung Y; Rosokha SV; Head-Gordon M; Kochi JK
    J Am Chem Soc; 2004 Oct; 126(42):13850-8. PubMed ID: 15493946
    [TBL] [Abstract][Full Text] [Related]  

  • 37. An NMR, IR and theoretical investigation of (1)H chemical shifts and hydrogen bonding in phenols.
    Abraham RJ; Mobli M
    Magn Reson Chem; 2007 Oct; 45(10):865-77. PubMed ID: 17729232
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Interplay between anion-pi and hydrogen bonding interactions.
    Escudero D; Frontera A; Quiñonero D; Deyà PM
    J Comput Chem; 2009 Jan; 30(1):75-82. PubMed ID: 18508295
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The importance of CH/pi hydrogen bonds in rational drug design: An ab initio fragment molecular orbital study to leukocyte-specific protein tyrosine (LCK) kinase.
    Ozawa T; Tsuji E; Ozawa M; Handa C; Mukaiyama H; Nishimura T; Kobayashi S; Okazaki K
    Bioorg Med Chem; 2008 Dec; 16(24):10311-8. PubMed ID: 18977146
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Dimers of formic acid, acetic acid, formamide and pyrrole-2-carboxylic acid: an ab initio study.
    Gora RW; Grabowski SJ; Leszczynski J
    J Phys Chem A; 2005 Jul; 109(29):6397-405. PubMed ID: 16833984
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.