BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 16249160)

  • 1. Retrospective analysis of double-strand break rejoining data collected using warm-lysis PFGE protocols.
    Ratnayake RK; Semenenko VA; Stewart RD
    Int J Radiat Biol; 2005 Jun; 81(6):421-8. PubMed ID: 16249160
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Repair of radiation-induced heat-labile sites is independent of DNA-PKcs, XRCC1 and PARP.
    Karlsson KH; Radulescu I; Rydberg B; Stenerlöw B
    Radiat Res; 2008 May; 169(5):506-12. PubMed ID: 18439038
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Retrospective analysis of double-strand break rejoining data collected using warm-lysis PFGE protocols.
    Ratnayake RK; Semenenko VA; Stewart RD
    Int J Radiat Biol; 2006 Feb; 82(2):139. PubMed ID: 16546912
    [No Abstract]   [Full Text] [Related]  

  • 4. Tests of the double-strand break, lethal-potentially lethal and repair-misrepair models for mammalian cell survival using data for survival as a function of delayed-plating interval for log-phase Chinese hamster V79 cells.
    Lange CS; Mayer PJ; Reddy NM
    Radiat Res; 1997 Sep; 148(3):285-92. PubMed ID: 9291360
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pulsed-field gel electrophoresis in the measurement of DNA double-strand break repair in xrs-6 and CHO cell lines: DNA degradation under some conditions interferes with the assessment of double-strand break rejoining.
    Whitaker SJ; McMillan TJ
    Radiat Res; 1992 Jun; 130(3):389-92. PubMed ID: 1594768
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Extensive repair of DNA double-strand breaks in cells deficient in the DNA-PK-dependent pathway of NHEJ after exclusion of heat-labile sites.
    Singh SK; Wu W; Wu W; Wang M; Iliakis G
    Radiat Res; 2009 Aug; 172(2):152-64. PubMed ID: 19630520
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A non-radioactive, PFGE-based assay for low levels of DNA double-strand breaks in mammalian cells.
    Gradzka I; Iwaneńko T
    DNA Repair (Amst); 2005 Sep; 4(10):1129-39. PubMed ID: 15994132
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of DNA double-strand break rejoining on clonogenic survival and micronucleus yield in human cell lines.
    Akudugu JM; Theron T; Serafin AM; Böhm L
    Int J Radiat Biol; 2004 Feb; 80(2):93-104. PubMed ID: 15164791
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Formation and repair of clustered damaged DNA sites in high LET irradiated cells.
    Gustafsson AS; Hartman T; Stenerlöw B
    Int J Radiat Biol; 2015; 91(10):820-6. PubMed ID: 26136085
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of Wortmannin on the repair profiles of DNA double-strand breaks in the whole genome and in interstitial telomeric sequences of Chinese hamster cells.
    Losada R; Rivero MT; Slijepcevic P; Goyanes V; Fernández JL
    Mutat Res; 2005 Feb; 570(1):119-28. PubMed ID: 15680409
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantification of radiation induced DNA double-strand breaks in human fibroblasts by PFGE: testing the applicability of random breakage models.
    Pinto M; Prise KM; Michael BD
    Int J Radiat Biol; 2002 May; 78(5):375-88. PubMed ID: 12020428
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Kinetics of DNA double-strand break repair throughout the cell cycle as assayed by pulsed field gel electrophoresis in CHO cells.
    Metzger L; Iliakis G
    Int J Radiat Biol; 1991 Jun; 59(6):1325-39. PubMed ID: 1677379
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Measurement of prompt DNA double-strand breaks in mammalian cells without including heat-labile sites: results for cells deficient in nonhomologous end joining.
    Stenerlöw B; Karlsson KH; Cooper B; Rydberg B
    Radiat Res; 2003 Apr; 159(4):502-10. PubMed ID: 12643795
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A DNA double-strand break kinetic rejoining model based on the local effect model.
    Tommasino F; Friedrich T; Scholz U; Taucher-Scholz G; Durante M; Scholz M
    Radiat Res; 2013 Nov; 180(5):524-38. PubMed ID: 24138482
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Repair and chromosomal damage.
    Bryant PE
    Radiother Oncol; 2004 Sep; 72(3):251-6. PubMed ID: 15450722
    [TBL] [Abstract][Full Text] [Related]  

  • 16. DNA double-strand break and chromosomal rejoining defects with misrejoining in Nijmegen breakage syndrome cells.
    Pluth JM; Yamazaki V; Cooper BA; Rydberg BE; Kirchgessner CU; Cooper PK
    DNA Repair (Amst); 2008 Jan; 7(1):108-18. PubMed ID: 17919995
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differences in repair profiles of interstitial telomeric sites between normal and DNA double-strand break repair deficient Chinese hamster cells.
    Rivero MT; Mosquera A; Goyanes V; Slijepcevic P; Fernández JL
    Exp Cell Res; 2004 Apr; 295(1):161-72. PubMed ID: 15051499
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evidence for complexity at the nanometer scale of radiation-induced DNA DSBs as a determinant of rejoining kinetics.
    Pinto M; Prise KM; Michael BD
    Radiat Res; 2005 Jul; 164(1):73-85. PubMed ID: 15966767
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hyperthermic radiosensitization: mode of action and clinical relevance.
    Kampinga HH; Dikomey E
    Int J Radiat Biol; 2001 Apr; 77(4):399-408. PubMed ID: 11304434
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The contribution of thermally labile sugar lesions to DNA double-strand break formation in cells grown in the presence of BrdU.
    Li F; Cheng Y; Iliakis G
    Int J Radiat Biol; 2015 Apr; 91(4):312-20. PubMed ID: 25510257
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.