BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 16249336)

  • 1. Recruitment of governing elements for electron transfer in the nitric oxide synthase family.
    Jáchymová M; Martásek P; Panda S; Roman LJ; Panda M; Shea TM; Ishimura Y; Kim JJ; Masters BS
    Proc Natl Acad Sci U S A; 2005 Nov; 102(44):15833-8. PubMed ID: 16249336
    [TBL] [Abstract][Full Text] [Related]  

  • 2. NADPH-cytochrome P450 oxidoreductase: prototypic member of the diflavin reductase family.
    Iyanagi T; Xia C; Kim JJ
    Arch Biochem Biophys; 2012 Dec; 528(1):72-89. PubMed ID: 22982532
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Control of electron transfer and catalysis in neuronal nitric-oxide synthase (nNOS) by a hinge connecting its FMN and FAD-NADPH domains.
    Haque MM; Fadlalla MA; Aulak KS; Ghosh A; Durra D; Stuehr DJ
    J Biol Chem; 2012 Aug; 287(36):30105-16. PubMed ID: 22722929
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural and Functional Studies of the Membrane-Binding Domain of NADPH-Cytochrome P450 Oxidoreductase.
    Xia C; Shen AL; Duangkaew P; Kotewong R; Rongnoparut P; Feix J; Kim JP
    Biochemistry; 2019 May; 58(19):2408-2418. PubMed ID: 31009206
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Autoregulation and Autoinhibition of the Main NO Synthase Isoforms (Brief Review).
    Popova NA; Soodaeva SK; Klimanov IA; Misharin VM; Temnov AA
    Sovrem Tekhnologii Med; 2023; 15(3):53-59. PubMed ID: 38435476
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure and function of an NADPH-cytochrome P450 oxidoreductase in an open conformation capable of reducing cytochrome P450.
    Hamdane D; Xia C; Im SC; Zhang H; Kim JJ; Waskell L
    J Biol Chem; 2009 Apr; 284(17):11374-84. PubMed ID: 19171935
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An isoform-specific pivot modulates the electron transfer between the flavin mononucleotide and heme centers in inducible nitric oxide synthase.
    Zheng H; Li J; Feng C
    J Biol Inorg Chem; 2020 Dec; 25(8):1097-1105. PubMed ID: 33057871
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nanodisc reconstitution of flavin mononucleotide binding domain of cytochrome-P450-reductase enables high-resolution NMR probing.
    Krishnarjuna B; Yamazaki T; Anantharamaiah GM; Ramamoorthy A
    Chem Commun (Camb); 2021 May; 57(39):4819-4822. PubMed ID: 33982687
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A perspective on conformational control of electron transfer in nitric oxide synthases.
    Hedison TM; Hay S; Scrutton NS
    Nitric Oxide; 2017 Feb; 63():61-67. PubMed ID: 27619338
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of Fermentation Scale on Microbiota Dynamics and Metabolic Functions for Indigo Reduction.
    Farjana N; Furukawa H; Sumi H; Yumoto I
    Int J Mol Sci; 2023 Sep; 24(19):. PubMed ID: 37834143
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Differential superoxide production in phosphorylated neuronal nitric oxide synthase mu and alpha variants.
    Gyawali YP; Jiang T; Yang J; Zheng H; Liu R; Zhang H; Feng C
    J Inorg Biochem; 2024 Feb; 251():112454. PubMed ID: 38100901
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Probing Protein Dynamics in Neuronal Nitric Oxide Synthase by Quantitative Cross-Linking Mass Spectrometry.
    Jiang T; Wan G; Zhang H; Gyawali YP; Underbakke ES; Feng C
    Biochemistry; 2023 Aug; 62(15):2232-2237. PubMed ID: 37459398
    [TBL] [Abstract][Full Text] [Related]  

  • 13. l-Arginine and COVID-19: An Update.
    Adebayo A; Varzideh F; Wilson S; Gambardella J; Eacobacci M; Jankauskas SS; Donkor K; Kansakar U; Trimarco V; Mone P; Lombardi A; Santulli G
    Nutrients; 2021 Nov; 13(11):. PubMed ID: 34836206
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Arginine and Endothelial Function.
    Gambardella J; Khondkar W; Morelli MB; Wang X; Santulli G; Trimarco V
    Biomedicines; 2020 Aug; 8(8):. PubMed ID: 32781796
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phosphorylation Controls Endothelial Nitric-oxide Synthase by Regulating Its Conformational Dynamics.
    Haque MM; Ray SS; Stuehr DJ
    J Biol Chem; 2016 Oct; 291(44):23047-23057. PubMed ID: 27613870
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Novel Fluorescence Arginine Analogue as a Sensor for Direct Identification and Imaging of Nitric Oxide Synthase-like Enzymes in Plants.
    Chang K; Guo T; Li P; Liu Y; Xu Y; Fang Y; Qian X
    Sci Rep; 2016 Sep; 6():32630. PubMed ID: 27586270
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regulatory role of Glu546 in flavin mononucleotide-heme electron transfer in human inducible nitric oxide synthase.
    Li W; Chen L; Lu C; Elmore BO; Astashkin AV; Rousseau DL; Yeh SR; Feng C
    Inorg Chem; 2013 May; 52(9):4795-801. PubMed ID: 23570607
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rational design of a fluorescent NADPH derivative imaging constitutive nitric-oxide synthases upon two-photon excitation.
    Li Y; Wang H; Tarus B; Perez MR; Morellato L; Henry E; Berka V; Tsai AL; Ramassamy B; Dhimane H; Dessy C; Tauc P; Boucher JL; Deprez E; Slama-Schwok A
    Proc Natl Acad Sci U S A; 2012 Jul; 109(31):12526-31. PubMed ID: 22802674
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanism of Nitric Oxide Synthase Regulation: Electron Transfer and Interdomain Interactions.
    Feng C
    Coord Chem Rev; 2012 Feb; 256(3-4):393-411. PubMed ID: 22523434
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of an isoform-specific serine residue in FMN-heme electron transfer in inducible nitric oxide synthase.
    Li W; Fan W; Chen L; Elmore BO; Piazza M; Guillemette JG; Feng C
    J Biol Inorg Chem; 2012 Jun; 17(5):675-85. PubMed ID: 22407542
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.