BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 16249336)

  • 41. The flavoprotein domain of P450BM-3: expression, purification, and properties of the flavin adenine dinucleotide- and flavin mononucleotide-binding subdomains.
    Sevrioukova I; Truan G; Peterson JA
    Biochemistry; 1996 Jun; 35(23):7528-35. PubMed ID: 8652532
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Control of electron transfer in neuronal NO synthase.
    Daff S; Noble MA; Craig DH; Rivers SL; Chapman SK; Munro AW; Fujiwara S; Rozhkova E; Sagami I; Shimizu T
    Biochem Soc Trans; 2001 May; 29(Pt 2):147-52. PubMed ID: 11356143
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Structural basis for isozyme-specific regulation of electron transfer in nitric-oxide synthase.
    Garcin ED; Bruns CM; Lloyd SJ; Hosfield DJ; Tiso M; Gachhui R; Stuehr DJ; Tainer JA; Getzoff ED
    J Biol Chem; 2004 Sep; 279(36):37918-27. PubMed ID: 15208315
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Update on mechanism and catalytic regulation in the NO synthases.
    Stuehr DJ; Santolini J; Wang ZQ; Wei CC; Adak S
    J Biol Chem; 2004 Aug; 279(35):36167-70. PubMed ID: 15133020
    [No Abstract]   [Full Text] [Related]  

  • 45. Structures of the neuronal and endothelial nitric oxide synthase heme domain with D-nitroarginine-containing dipeptide inhibitors bound.
    Flinspach M; Li H; Jamal J; Yang W; Huang H; Silverman RB; Poulos TL
    Biochemistry; 2004 May; 43(18):5181-7. PubMed ID: 15122883
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Electron transfer by diflavin reductases.
    Murataliev MB; Feyereisen R; Walker FA
    Biochim Biophys Acta; 2004 Apr; 1698(1):1-26. PubMed ID: 15063311
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Fluorescence of riboflavin and flavin-adenine dinucleotide.
    WEBER G
    Biochem J; 1950; 47(1):114-21. PubMed ID: 14791317
    [No Abstract]   [Full Text] [Related]  

  • 48. Mutant P450 oxidoreductase causes disordered steroidogenesis with and without Antley-Bixler syndrome.
    Flück CE; Tajima T; Pandey AV; Arlt W; Okuhara K; Verge CF; Jabs EW; Mendonça BB; Fujieda K; Miller WL
    Nat Genet; 2004 Mar; 36(3):228-30. PubMed ID: 14758361
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Structural elements contribute to the calcium/calmodulin dependence on enzyme activation in human endothelial nitric-oxide synthase.
    Chen PF; Wu KK
    J Biol Chem; 2003 Dec; 278(52):52392-400. PubMed ID: 14561757
    [TBL] [Abstract][Full Text] [Related]  

  • 50. STUDIES ON THE MECHANISM OF MICROSOMAL TRIPHOSPHOPYRIDINE NUCLEOTIDE-CYTOCHROME C REDUCTASE.
    MASTERS BS; KAMIN H; GIBSON QH; WILLIAMS CH
    J Biol Chem; 1965 Feb; 240():921-31. PubMed ID: 14275154
    [No Abstract]   [Full Text] [Related]  

  • 51. Identification of novel roles of the cytochrome p450 system in early embryogenesis: effects on vasculogenesis and retinoic Acid homeostasis.
    Otto DM; Henderson CJ; Carrie D; Davey M; Gundersen TE; Blomhoff R; Adams RH; Tickle C; Wolf CR
    Mol Cell Biol; 2003 Sep; 23(17):6103-16. PubMed ID: 12917333
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Chimeric enzymes of cytochrome P450 oxidoreductase and neuronal nitric-oxide synthase reductase domain reveal structural and functional differences.
    Roman LJ; McLain J; Masters BS
    J Biol Chem; 2003 Jul; 278(28):25700-7. PubMed ID: 12730215
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A conserved flavin-shielding residue regulates NO synthase electron transfer and nicotinamide coenzyme specificity.
    Adak S; Sharma M; Meade AL; Stuehr DJ
    Proc Natl Acad Sci U S A; 2002 Oct; 99(21):13516-21. PubMed ID: 12359874
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Calmodulin activates electron transfer through neuronal nitric-oxide synthase reductase domain by releasing an NADPH-dependent conformational lock.
    Craig DH; Chapman SK; Daff S
    J Biol Chem; 2002 Sep; 277(37):33987-94. PubMed ID: 12089147
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Intrinsic and extrinsic modulation of nitric oxide synthase activity.
    Roman LJ; Martásek P; Masters BS
    Chem Rev; 2002 Apr; 102(4):1179-90. PubMed ID: 11942792
    [No Abstract]   [Full Text] [Related]  

  • 56. Disabling a C-terminal autoinhibitory control element in endothelial nitric-oxide synthase by phosphorylation provides a molecular explanation for activation of vascular NO synthesis by diverse physiological stimuli.
    Lane P; Gross SS
    J Biol Chem; 2002 May; 277(21):19087-94. PubMed ID: 11839759
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Association of multiple developmental defects and embryonic lethality with loss of microsomal NADPH-cytochrome P450 oxidoreductase.
    Shen AL; O'Leary KA; Kasper CB
    J Biol Chem; 2002 Feb; 277(8):6536-41. PubMed ID: 11742006
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Role of the conserved phenylalanine 181 of NADPH-cytochrome P450 oxidoreductase in FMN binding and catalytic activity.
    Paine MJ; Ayivor S; Munro A; Tsan P; Lian LY; Roberts GC; Wolf CR
    Biochemistry; 2001 Nov; 40(45):13439-47. PubMed ID: 11695890
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Crystal structure of the FAD/NADPH-binding domain of rat neuronal nitric-oxide synthase. Comparisons with NADPH-cytochrome P450 oxidoreductase.
    Zhang J; Martàsek P; Paschke R; Shea T; Siler Masters BS; Kim JJ
    J Biol Chem; 2001 Oct; 276(40):37506-13. PubMed ID: 11473123
    [TBL] [Abstract][Full Text] [Related]  

  • 60. NADPH-cytochrome P450 oxidoreductase. Structural basis for hydride and electron transfer.
    Hubbard PA; Shen AL; Paschke R; Kasper CB; Kim JJ
    J Biol Chem; 2001 Aug; 276(31):29163-70. PubMed ID: 11371558
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.