BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

47 related articles for article (PubMed ID: 16249368)

  • 1. Quantifying the Lymphatic Transport of Model Therapeutics from the Brain in Rats.
    Hoang TA; Gracia G; Cao E; Nicolazzo JA; Trevaskis NL
    Mol Pharm; 2024 May; 21(5):2473-2483. PubMed ID: 38579335
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The mesenteric lymph duct cannulated rat model: application to the assessment of intestinal lymphatic drug transport.
    Trevaskis NL; Hu L; Caliph SM; Han S; Porter CJ
    J Vis Exp; 2015 Mar; (97):. PubMed ID: 25866901
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Use of Isotope Tracers to Assess Lipid Absorption in Conscious Lymph Fistula Mice.
    Ko CW; Qu J; Liu M; Black DD; Tso P
    Curr Protoc Mouse Biol; 2019 Mar; 9(1):e60. PubMed ID: 30801996
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ivacaftor pharmacokinetics and lymphatic transport after enteral administration in rats.
    Pozniak J; Ryšánek P; Smrčka D; Kozlík P; Křížek T; Šmardová J; Nováková A; Das D; Bobek D; Arora M; Hofmann J; Doušová T; Šíma M; Slanař O
    Front Pharmacol; 2024; 15():1331637. PubMed ID: 38444938
    [No Abstract]   [Full Text] [Related]  

  • 5. Preparation, Characterization, and In Vivo Evaluation of Gentiopicroside-Phospholipid Complex (GTP-PC) and Its Self-Nanoemulsion Drug Delivery System (GTP-PC-SNEDDS).
    Tong Y; Shi W; Zhang Q; Wang J
    Pharmaceuticals (Basel); 2023 Jan; 16(1):. PubMed ID: 36678595
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nanoemulsomes for Enhanced Oral Bioavailability of the Anticancer Phytochemical Andrographolide: Characterization and Pharmacokinetics.
    Elsheikh MA; Rizk SA; Elnaggar YSR; Abdallah OY
    AAPS PharmSciTech; 2021 Oct; 22(7):246. PubMed ID: 34617166
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lipid Drug Carriers for Cancer Therapeutics: An Insight into Lymphatic Targeting, P-gp, CYP3A4 Modulation and Bioavailability Enhancement.
    Chaturvedi S; Verma A; Saharan VA
    Adv Pharm Bull; 2020 Sep; 10(4):524-541. PubMed ID: 33072532
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Intestinal Lymph Flow, and Lipid and Drug Transport Scale Allometrically From Pre-clinical Species to Humans.
    Trevaskis NL; Lee G; Escott A; Phang KL; Hong J; Cao E; Katneni K; Charman SA; Han S; Charman WN; Phillips ARJ; Windsor JA; Porter CJH
    Front Physiol; 2020; 11():458. PubMed ID: 32670074
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of Lipid-based Drug Delivery System (Phytosolve) on Oral Bioavailability of Dibudipine.
    Keyhanfar F; Khani S; Bohlooli S
    Iran J Pharm Res; 2014; 13(4):1149-56. PubMed ID: 25587302
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A mouse model to evaluate the impact of species, sex, and lipid load on lymphatic drug transport.
    Trevaskis NL; Caliph SM; Nguyen G; Tso P; Charman WN; Porter CJ
    Pharm Res; 2013 Dec; 30(12):3254-70. PubMed ID: 23430484
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The mechanism of lymphatic access of two cholesteryl ester transfer protein inhibitors (CP524,515 and CP532,623) and evaluation of their impact on lymph lipoprotein profiles.
    Trevaskis NL; Shanker RM; Charman WN; Porter CJ
    Pharm Res; 2010 Sep; 27(9):1949-64. PubMed ID: 20635194
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phospholipids and lipid-based formulations in oral drug delivery.
    Fricker G; Kromp T; Wendel A; Blume A; Zirkel J; Rebmann H; Setzer C; Quinkert RO; Martin F; Müller-Goymann C
    Pharm Res; 2010 Aug; 27(8):1469-86. PubMed ID: 20411409
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The role of the intestinal lymphatics in the absorption of two highly lipophilic cholesterol ester transfer protein inhibitors (CP524,515 and CP532,623).
    Trevaskis NL; McEvoy CL; McIntosh MP; Edwards GA; Shanker RM; Charman WN; Porter CJ
    Pharm Res; 2010 May; 27(5):878-93. PubMed ID: 20221896
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lipid-based delivery systems and intestinal lymphatic drug transport: a mechanistic update.
    Trevaskis NL; Charman WN; Porter CJ
    Adv Drug Deliv Rev; 2008 Mar; 60(6):702-16. PubMed ID: 18155316
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An examination of the effect of intestinal first pass extraction on intestinal lymphatic transport of saquinavir in the rat.
    Griffin BT; O'Driscoll CM
    Pharm Res; 2008 May; 25(5):1125-33. PubMed ID: 17975709
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An acute and coincident increase in FABP expression and lymphatic lipid and drug transport occurs during intestinal infusion of lipid-based drug formulations to rats.
    Trevaskis NL; Lo CM; Ma LY; Tso P; Irving HR; Porter CJ; Charman WN
    Pharm Res; 2006 Aug; 23(8):1786-96. PubMed ID: 16858652
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The lymph lipid precursor pool is a key determinant of intestinal lymphatic drug transport.
    Trevaskis NL; Porter CJ; Charman WN
    J Pharmacol Exp Ther; 2006 Feb; 316(2):881-91. PubMed ID: 16249368
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An examination of the interplay between enterocyte-based metabolism and lymphatic drug transport in the rat.
    Trevaskis NL; Porter CJ; Charman WN
    Drug Metab Dispos; 2006 May; 34(5):729-33. PubMed ID: 16467133
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Acute hypertriglyceridemia promotes intestinal lymphatic lipid and drug transport: a positive feedback mechanism in lipid and drug absorption.
    Trevaskis NL; Charman WN; Porter CJ
    Mol Pharm; 2011 Aug; 8(4):1132-9. PubMed ID: 21604764
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 3.