BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 16249514)

  • 1. A critical role of CaBP4 in the cone synapse.
    Maeda T; Lem J; Palczewski K; Haeseleer F
    Invest Ophthalmol Vis Sci; 2005 Nov; 46(11):4320-7. PubMed ID: 16249514
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cone-like morphological, molecular, and electrophysiological features of the photoreceptors of the Nrl knockout mouse.
    Daniele LL; Lillo C; Lyubarsky AL; Nikonov SS; Philp N; Mears AJ; Swaroop A; Williams DS; Pugh EN
    Invest Ophthalmol Vis Sci; 2005 Jun; 46(6):2156-67. PubMed ID: 15914637
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Using Silent Substitution to Track the Mesopic Transition From Rod- to Cone-Based Vision in Mice.
    Allen AE; Lucas RJ
    Invest Ophthalmol Vis Sci; 2016 Jan; 57(1):276-87. PubMed ID: 26818794
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Diminished Cone Sensitivity in cpfl3 Mice Is Caused by Defective Transducin Signaling.
    Chen NS; Ingram NT; Frederiksen R; Sampath AP; Chen J; Fain GL
    Invest Ophthalmol Vis Sci; 2020 Apr; 61(4):26. PubMed ID: 32315379
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Age-related changes in Cngb1-X1 knockout mice: prolonged cone survival.
    Zhang Y; Rubin GR; Fineberg N; Huisingh C; McGwin G; Pittler SJ; Kraft TW
    Doc Ophthalmol; 2012 Jun; 124(3):163-75. PubMed ID: 22367173
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Speed, spatial, and temporal tuning of rod and cone vision in mouse.
    Umino Y; Solessio E; Barlow RB
    J Neurosci; 2008 Jan; 28(1):189-98. PubMed ID: 18171936
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Light-dependent redistribution of visual arrestins and transducin subunits in mice with defective phototransduction.
    Zhang H; Huang W; Zhang H; Zhu X; Craft CM; Baehr W; Chen CK
    Mol Vis; 2003 Jun; 9():231-7. PubMed ID: 12802257
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Physiological features of the S- and M-cone photoreceptors of wild-type mice from single-cell recordings.
    Nikonov SS; Kholodenko R; Lem J; Pugh EN
    J Gen Physiol; 2006 Apr; 127(4):359-74. PubMed ID: 16567464
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rod and cone contributions to horizontal cell light responses in the mouse retina.
    Trümpler J; Dedek K; Schubert T; de Sevilla Müller LP; Seeliger M; Humphries P; Biel M; Weiler R
    J Neurosci; 2008 Jul; 28(27):6818-25. PubMed ID: 18596157
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Essential role of Ca2+-binding protein 4, a Cav1.4 channel regulator, in photoreceptor synaptic function.
    Haeseleer F; Imanishi Y; Maeda T; Possin DE; Maeda A; Lee A; Rieke F; Palczewski K
    Nat Neurosci; 2004 Oct; 7(10):1079-87. PubMed ID: 15452577
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Scotopic visual signaling in the mouse retina is modulated by high-affinity plasma membrane calcium extrusion.
    Duncan JL; Yang H; Doan T; Silverstein RS; Murphy GJ; Nune G; Liu X; Copenhagen D; Tempel BL; Rieke F; Krizaj D
    J Neurosci; 2006 Jul; 26(27):7201-11. PubMed ID: 16822977
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synaptic circuitry mediating light-evoked signals in dark-adapted mouse retina.
    Wu SM; Gao F; Pang JJ
    Vision Res; 2004 Dec; 44(28):3277-88. PubMed ID: 15535995
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synaptic plasticity in CNGA3(-/-) mice: cone bipolar cells react on the missing cone input and form ectopic synapses with rods.
    Haverkamp S; Michalakis S; Claes E; Seeliger MW; Humphries P; Biel M; Feigenspan A
    J Neurosci; 2006 May; 26(19):5248-55. PubMed ID: 16687517
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functional interchangeability of rod and cone transducin alpha-subunits.
    Deng WT; Sakurai K; Liu J; Dinculescu A; Li J; Pang J; Min SH; Chiodo VA; Boye SL; Chang B; Kefalov VJ; Hauswirth WW
    Proc Natl Acad Sci U S A; 2009 Oct; 106(42):17681-6. PubMed ID: 19815523
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Voltage-clamp recordings of light responses from wild-type and mutant mouse cone photoreceptors.
    Ingram NT; Sampath AP; Fain GL
    J Gen Physiol; 2019 Nov; 151(11):1287-1299. PubMed ID: 31562185
    [TBL] [Abstract][Full Text] [Related]  

  • 16. ERG Responses in Mice with Deletion of the Synaptic Ribbon Component RIBEYE.
    Fairless R; Williams SK; Katiyar R; Maxeiner S; Schmitz F; Diem R
    Invest Ophthalmol Vis Sci; 2020 May; 61(5):37. PubMed ID: 32437548
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rod- and cone-driven responses in mice expressing human L-cone pigment.
    Tsai TI; Atorf J; Neitz M; Neitz J; Kremers J
    J Neurophysiol; 2015 Oct; 114(4):2230-41. PubMed ID: 26245314
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cone versus rod disease in a mutant Rpgr mouse caused by different genetic backgrounds.
    Brunner S; Skosyrski S; Kirschner-Schwabe R; Knobeloch KP; Neidhardt J; Feil S; Glaus E; Luhmann UF; Rüther K; Berger W
    Invest Ophthalmol Vis Sci; 2010 Feb; 51(2):1106-15. PubMed ID: 20007830
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of the rod photoresponse on light adaptation and circadian rhythmicity in the cone ERG.
    Cameron MA; Lucas RJ
    Mol Vis; 2009 Oct; 15():2209-16. PubMed ID: 19898639
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of the β2-Subunit of L-Type Voltage-Gated Cav Channels on the Structural and Functional Development of Photoreceptor Ribbon Synapses.
    Katiyar R; Weissgerber P; Roth E; Dörr J; Sothilingam V; Garcia Garrido M; Beck SC; Seeliger MW; Beck A; Schmitz F; Flockerzi V
    Invest Ophthalmol Vis Sci; 2015 Apr; 56(4):2312-24. PubMed ID: 25766584
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.