These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 16249896)

  • 1. Direct effects of physical stress can be counteracted by indirect benefits: oyster growth on a tidal elevation gradient.
    Bishop MJ; Peterson CH
    Oecologia; 2006 Mar; 147(3):426-33. PubMed ID: 16249896
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Intertidal oysters reach their physiological limit in a future high-CO
    Scanes E; Parker LM; O'Connor WA; Stapp LS; Ross PM
    J Exp Biol; 2017 Mar; 220(Pt 5):765-774. PubMed ID: 28250175
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Condition-specific competition allows coexistence of competitively superior exotic oysters with native oysters.
    Krassoi FR; Brown KR; Bishop MJ; Kelaher BP; Summerhayes S
    J Anim Ecol; 2008 Jan; 77(1):5-15. PubMed ID: 18177325
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fast-growing oysters show reduced capacity to provide a thermal refuge to intertidal biodiversity at high temperatures.
    McAfee D; O'Connor WA; Bishop MJ
    J Anim Ecol; 2017 Oct; 86(6):1352-1362. PubMed ID: 28913869
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transcriptomics and Fitness Data Reveal Adaptive Plasticity of Thermal Tolerance in Oysters Inhabiting Different Tidal Zones.
    Li A; Li L; Wang W; Song K; Zhang G
    Front Physiol; 2018; 9():825. PubMed ID: 30210351
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inducible variation in anaerobic energy metabolism reflects hypoxia tolerance across the intertidal and subtidal distribution of the Pacific oyster (Crassostrea gigas).
    Meng J; Wang T; Li L; Zhang G
    Mar Environ Res; 2018 Jul; 138():135-143. PubMed ID: 29724494
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamics of Mud Blister Worm Infestation and Shell Repair by Oysters.
    Dorgan KM; Moseley RD; Titus E; Watson H; Cole SM; Walton W
    Biol Bull; 2021 Apr; 240(2):118-131. PubMed ID: 33939941
    [TBL] [Abstract][Full Text] [Related]  

  • 8. DNA methylation mediates differentiation in thermal responses of Pacific oyster (Crassostrea gigas) derived from different tidal levels.
    Wang X; Li A; Wang W; Que H; Zhang G; Li L
    Heredity (Edinb); 2021 Jan; 126(1):10-22. PubMed ID: 32807851
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Anaerobic survival potential of four bivalves from different habitats. A comparative survey.
    Babarro JM; De Zwaan A
    Comp Biochem Physiol A Mol Integr Physiol; 2008 Sep; 151(1):108-13. PubMed ID: 18593601
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of air-exposure gradients on spatial infection patterns of Perkinsus marinus in the eastern oyster Crassostrea virginica.
    Malek JC; Breitburg DL
    Dis Aquat Organ; 2016 Feb; 118(2):139-51. PubMed ID: 26912044
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Responses of growth to elevation fail to explain vertical zonation of suspension-feeding bivalves on a tidal flat.
    Peterson CH; Black R
    Oecologia; 1988 Aug; 76(3):423-429. PubMed ID: 28312023
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The mechanisms by which oysters facilitate invertebrates vary across environmental gradients.
    McAfee D; Bishop MJ
    Oecologia; 2019 Apr; 189(4):1095-1106. PubMed ID: 30826868
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Feeding mechanics as the basis for differential uptake of the neurotoxin domoic acid by oysters, Crassostrea virginica, and mussels, Mytilus edulis.
    Mafra LL; Bricelj VM; Ouellette C; Bates SS
    Aquat Toxicol; 2010 Apr; 97(2):160-71. PubMed ID: 20153533
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of temperature and cadmium exposure on the mitochondria of oysters (Crassostrea virginica) exposed to hypoxia and subsequent reoxygenation.
    Ivanina AV; Kurochkin IO; Leamy L; Sokolova IM
    J Exp Biol; 2012 Sep; 215(Pt 18):3142-54. PubMed ID: 22660786
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Direct and heritable effects of natural tidal environments on DNA methylation in Pacific oysters (Crassostrea gigas).
    Wang X; Li A; Wang W; Zhang G; Li L
    Environ Res; 2021 Jun; 197():111058. PubMed ID: 33757824
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Epizootic and enzootic aspects of Minchinia nelsoni (Haplosporida) disease in Maryland oysters.
    Farley CA
    J Protozool; 1975 Aug; 22(3):418-27. PubMed ID: 808602
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transgenerational effects of intertidal environment on physiological phenotypes and DNA methylation in Pacific oysters.
    Wang X; Cong R; Li A; Wang W; Zhang G; Li L
    Sci Total Environ; 2023 May; 871():162112. PubMed ID: 36764539
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interactive effects of CO₂ and trace metals on the proteasome activity and cellular stress response of marine bivalves Crassostrea virginica and Mercenaria mercenaria.
    Götze S; Matoo OB; Beniash E; Saborowski R; Sokolova IM
    Aquat Toxicol; 2014 Apr; 149():65-82. PubMed ID: 24572072
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transgenerational plasticity responses of oysters to ocean acidification differ with habitat.
    Parker LM; Scanes E; O'Connor WA; Ross PM
    J Exp Biol; 2021 Jun; 224(12):. PubMed ID: 33785501
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Physiological components of growth differences between individual oysters (Crassostrea gigas) and a comparison with Saccostrea commercialis.
    Bayne BL
    Physiol Biochem Zool; 1999; 72(6):705-13. PubMed ID: 10603334
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.