These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 16249958)

  • 1. The photopic ERG of the albino guinea pig (Cavia porcellus): a model of the human photopic ERG.
    Racine J; Joly S; Rufiange M; Rosolen S; Casanova C; Lachapelle P
    Doc Ophthalmol; 2005 Jan; 110(1):67-77. PubMed ID: 16249958
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The ERG of guinea pig (Cavis porcellus): comparison with I-type monkey and E-type rat.
    Lei B
    Doc Ophthalmol; 2003 May; 106(3):243-9. PubMed ID: 12737501
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterizing the Retinal Function of Psammomys obesus: A Diurnal Rodent Model to Study Human Retinal Function.
    Dellaa A; Polosa A; Mbarek S; Hammoum I; Messaoud R; Amara S; Azaiz R; Charfeddine R; Dogui M; Khairallah M; Lachapelle P; Ben Chaouacha-Chekir R
    Curr Eye Res; 2017 Jan; 42(1):79-87. PubMed ID: 27216715
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Push-pull model of the primate photopic electroretinogram: a role for hyperpolarizing neurons in shaping the b-wave.
    Sieving PA; Murayama K; Naarendorp F
    Vis Neurosci; 1994; 11(3):519-32. PubMed ID: 8038126
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Animal models of human retinal and optic nerve diseases analysed using electroretinography].
    Kondo M
    Nippon Ganka Gakkai Zasshi; 2010 Mar; 114(3):248-78, discussion 279. PubMed ID: 20387538
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural and functional maturation of the retina of the albino Hartley guinea pig.
    Racine J; Behn D; Lachapelle P
    Doc Ophthalmol; 2008 Jul; 117(1):13-26. PubMed ID: 18034273
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Photopic electroretinograms of mGluR6-deficient mice.
    Koyasu T; Kondo M; Miyata K; Ueno S; Miyata T; Nishizawa Y; Terasaki H
    Curr Eye Res; 2008 Jan; 33(1):91-9. PubMed ID: 18214746
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Photopic ERG negative response from amacrine cell signaling in RCS rat retinal degeneration.
    Machida S; Raz-Prag D; Fariss RN; Sieving PA; Bush RA
    Invest Ophthalmol Vis Sci; 2008 Jan; 49(1):442-52. PubMed ID: 18172124
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparing the photopic ERG i-wave in different species.
    Rosolen SG; Rigaudière F; LeGargasson JF; Chalier C; Rufiange M; Racine J; Joly S; Lachapelle P
    Vet Ophthalmol; 2004; 7(3):189-92. PubMed ID: 15091327
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electroretinograms of albino and pigmented guinea-pigs (Cavia porcellus).
    Bui BV; Sinclair AJ; Vingrys AJ
    Aust N Z J Ophthalmol; 1998 May; 26 Suppl 1():S98-100. PubMed ID: 9685037
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Retinal A2A and A3 adenosine receptors modulate the components of the rat electroretinogram.
    Jonsson G; Eysteinsson T
    Vis Neurosci; 2017 Jan; 34():E001. PubMed ID: 28304243
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A proximal retinal component in the primate photopic ERG a-wave.
    Bush RA; Sieving PA
    Invest Ophthalmol Vis Sci; 1994 Feb; 35(2):635-45. PubMed ID: 8113014
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Asymmetrical Functional Deficits of ON and OFF Retinal Processing in the mdx3Cv Mouse Model of Duchenne Muscular Dystrophy.
    Tsai TI; Barboni MT; Nagy BV; Roux MJ; Rendon A; Ventura DF; Kremers J
    Invest Ophthalmol Vis Sci; 2016 Oct; 57(13):5788-5798. PubMed ID: 27792813
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Photoreceptor and post-photoreceptoral contributions to photopic ERG a-wave in rhodopsin P347L transgenic rabbits.
    Hirota R; Kondo M; Ueno S; Sakai T; Koyasu T; Terasaki H
    Invest Ophthalmol Vis Sci; 2012 Mar; 53(3):1467-72. PubMed ID: 22273723
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ontogenesis of the electroretinogram in a precocial mammal, the guinea pig (Cavia porcellus).
    Huang J; Wyse JP; Spira AW
    Comp Biochem Physiol A Comp Physiol; 1990; 95(1):149-55. PubMed ID: 1968807
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of glutamate analogues and inhibitory neurotransmitters on the electroretinograms elicited by random sequence stimuli in rabbits.
    Horiguchi M; Suzuki S; Kondo M; Tanikawa A; Miyake Y
    Invest Ophthalmol Vis Sci; 1998 Oct; 39(11):2171-6. PubMed ID: 9761298
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Light adaptation of cones in rabbits and guinea pigs.].
    Mœller A; Eysteinsson T
    Laeknabladid; 2001 Mar; 87(3):221-6. PubMed ID: 16940672
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recording multifocal electroretinogram on and off responses in humans.
    Kondo M; Miyake Y; Horiguchi M; Suzuki S; Tanikawa A
    Invest Ophthalmol Vis Sci; 1998 Mar; 39(3):574-80. PubMed ID: 9501869
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Retinal on-pathway deficit in congenital disorder of glycosylation due to phosphomannomutase deficiency.
    Thompson DA; Lyons RJ; Liasis A; Russell-Eggitt I; Jägle H; Grünewald S
    Arch Ophthalmol; 2012 Jun; 130(6):712-9. PubMed ID: 22801829
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantitative relationship of the scotopic and photopic ERG to photoreceptor cell loss in light damaged rats.
    Sugawara T; Sieving PA; Bush RA
    Exp Eye Res; 2000 May; 70(5):693-705. PubMed ID: 10870528
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.