BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 16249965)

  • 1. Relief of arsenate toxicity by Cd-stimulated phytochelatin synthesis in the green alga Chlamydomonas reinhardtii.
    Kobayashi I; Fujiwara S; Saegusa H; Inouhe M; Matsumoto H; Tsuzuki M
    Mar Biotechnol (NY); 2006; 8(1):94-101. PubMed ID: 16249965
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biosynthesis of phytochelatins and arsenic accumulation in the marine microalga Phaeodactylum tricornutum in response to arsenate exposure.
    Morelli E; Mascherpa MC; Scarano G
    Biometals; 2005 Dec; 18(6):587-93. PubMed ID: 16388398
    [TBL] [Abstract][Full Text] [Related]  

  • 3. ars1, an Arabidopsis mutant exhibiting increased tolerance to arsenate and increased phosphate uptake.
    Lee DA; Chen A; Schroeder JI
    Plant J; 2003 Sep; 35(5):637-46. PubMed ID: 12940956
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phytochelatin formation kinetics and toxic effects in the freshwater alga Chlamydomonas reinhardtii upon short- and long-term exposure to lead(II).
    Scheidegger C; Behra R; Sigg L
    Aquat Toxicol; 2011 Jan; 101(2):423-9. PubMed ID: 21216353
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The importance of glutathione and phytochelatins on the selenite and arsenate detoxification in Arabidopsis thaliana.
    Aborode FA; Raab A; Voigt M; Costa LM; Krupp EM; Feldmann J
    J Environ Sci (China); 2016 Nov; 49():150-161. PubMed ID: 28007170
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of cadmium accumulation on green algae Chlamydomonas reinhardtii and acid-tolerant Chlamydomonas CPCC 121.
    Samadani M; Perreault F; Oukarroum A; Dewez D
    Chemosphere; 2018 Jan; 191():174-182. PubMed ID: 29032262
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phytochelatins do not correlate with the level of Cd accumulation in Chlamydomonas spp.
    Nishikawa K; Onodera A; Tominaga N
    Chemosphere; 2006 Jun; 63(9):1553-9. PubMed ID: 16297961
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analytical approach for characterization of cadmium-induced thiol peptides--a case study using Chlamydomonas reinhardtii.
    Bräutigam A; Schaumlöffel D; Krauss GJ; Wesenberg D
    Anal Bioanal Chem; 2009 Nov; 395(6):1737-47. PubMed ID: 19590857
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cadmium detoxification strategies in two phytoplankton species: metal binding by newly synthesized thiolated peptides and metal sequestration in granules.
    Lavoie M; Le Faucheur S; Fortin C; Campbell PG
    Aquat Toxicol; 2009 Apr; 92(2):65-75. PubMed ID: 19201040
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of glutathione chemical effectors in the response of maize to arsenic exposure.
    Requejo R; Tena M
    J Plant Physiol; 2012 May; 169(7):649-56. PubMed ID: 22418430
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phytochelatin synthesis in Dunaliella salina induced by arsenite and arsenate under various phosphate regimes.
    Wang Y; Zhang C; Zheng Y; Ge Y
    Ecotoxicol Environ Saf; 2017 Feb; 136():150-160. PubMed ID: 27865115
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Whole-genome re-sequencing and transcriptome reveal cadmium tolerance related genes and pathways in Chlamydomonas reinhardtii.
    Yu Z; Zhang T; Zhu Y
    Ecotoxicol Environ Saf; 2020 Mar; 191():110231. PubMed ID: 31981954
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of arsenate (AS5+) on growth and production of glutathione (GSH) and phytochelatins (PCS) in Chlorella vulgaris.
    Jiang Y; Purchase D; Jones H; Garelick H
    Int J Phytoremediation; 2011 Sep; 13(8):834-44. PubMed ID: 21972522
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Physiological characterization of cadmium-exposed Chlamydomonas reinhardtii.
    Bräutigam A; Schaumlöffel D; Preud'homme H; Thondorf I; Wesenberg D
    Plant Cell Environ; 2011 Dec; 34(12):2071-82. PubMed ID: 21819413
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Arsenate tolerance in Silene paradoxa does not rely on phytochelatin-dependent sequestration.
    Arnetoli M; Vooijs R; ten Bookum W; Galardi F; Gonnelli C; Gabbrielli R; Schat H; Verkleij JA
    Environ Pollut; 2008 Apr; 152(3):585-91. PubMed ID: 17707110
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rapid biotransformation of arsenate into oxo-arsenosugars by a freshwater unicellular green alga, Chlamydomonas reinhardtii.
    Miyashita S; Fujiwara S; Tsuzuki M; Kaise T
    Biosci Biotechnol Biochem; 2011; 75(3):522-30. PubMed ID: 21389618
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Isolation and characterization of arsenate-sensitive and resistant mutants of Chlamydomonas reinhardtii.
    Fujiwara S; Kobayashi I; Hoshino S; Kaise T; Shimogawara K; Usuda H; Tsuzuki M
    Plant Cell Physiol; 2000 Jan; 41(1):77-83. PubMed ID: 10750711
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Toxicity and bioaccumulation kinetics of arsenate in two freshwater green algae under different phosphate regimes.
    Wang NX; Li Y; Deng XH; Miao AJ; Ji R; Yang LY
    Water Res; 2013 May; 47(7):2497-506. PubMed ID: 23497978
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sensitivity of Chlamydomonas reinhardtii to cadmium stress is associated with phototaxis.
    Yu Z; Zhang T; Hao R; Zhu Y
    Environ Sci Process Impacts; 2019 Jun; 21(6):1011-1020. PubMed ID: 31120077
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thioarsenate Toxicity and Tolerance in the Model System Arabidopsis thaliana.
    Planer-Friedrich B; Kühnlenz T; Halder D; Lohmayer R; Wilson N; Rafferty C; Clemens S
    Environ Sci Technol; 2017 Jun; 51(12):7187-7196. PubMed ID: 28525265
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.