BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 16250103)

  • 1. Expansion of triplex recognition codes by the use of novel bicyclic nucleoside derivatives (WNA).
    Taniguchi Y; Nakamura A; Senko Y; Kodama K; Nagatsugi F; Sasaki S
    Nucleosides Nucleotides Nucleic Acids; 2005; 24(5-7):823-7. PubMed ID: 16250103
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Selective formation of stable triplexes including a TA or a CG interrupting site with new bicyclic nucleoside analogues (WNA).
    Sasaki S; Taniguchi Y; Takahashi R; Senko Y; Kodama K; Nagatsugi F; Maeda M
    J Am Chem Soc; 2004 Jan; 126(2):516-28. PubMed ID: 14719949
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Design and evaluation of novel nucleoside analogs (WNA) for specific formation of non-natural type triplexes containing a TA or CG interrupting site.
    Taniguchi Y; Senko Y; Kodama K; Nakamura A; Sasaki S
    Nucleic Acids Res Suppl; 2003; (3):113-4. PubMed ID: 14510406
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recognition of CG interrupting site by W-shaped nucleoside analogs (WNA) having the pyrazole ring in an anti-parallel triplex DNA.
    Taniguchi Y; Uchida Y; Takaki T; Aoki E; Sasaki S
    Bioorg Med Chem; 2009 Oct; 17(19):6803-10. PubMed ID: 19736014
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Efficient DNA strand displacement by a W-shaped nucleoside analogue (WNA-βT) containing an ortho-methyl-substituted phenyl ring.
    Aoki E; Taniguchi Y; Wada Y; Sasaki S
    Chembiochem; 2012 May; 13(8):1152-60. PubMed ID: 22549913
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of halogenated WNA derivatives on sequence dependency for expansion of recognition sequences in non-natural-type triplexes.
    Taniguchi Y; Nakamura A; Senko Y; Nagatsugi F; Sasaki S
    J Org Chem; 2006 Mar; 71(5):2115-22. PubMed ID: 16497000
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modification of the aromatic ring of the WNA analogues for expansion of the triplex recognition codes.
    Taniguchi Y; Nakamura A; Aoki E; Sasaki S
    Nucleic Acids Symp Ser (Oxf); 2005; (49):173-4. PubMed ID: 17150689
    [TBL] [Abstract][Full Text] [Related]  

  • 8. New base analogs for the formation of non-natural triplexes.
    Sasaki S; Yamauchi H; Takahasi R; Taniguchi Y; Maeda M
    Nucleic Acids Res Suppl; 2001; (1):23-4. PubMed ID: 12836245
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of 5-substituted pyrimidine nucleoside bases of WNA on stability of triplex DNA.
    Taniguchi Y; Nakamura A; Senko Y; Sasaki S
    Nucleic Acids Symp Ser (Oxf); 2004; (48):69-70. PubMed ID: 17150482
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Formation of a stable triplex incorporating a CG interrupting site by a new WNA derivative containing 3-aminopyrazole as a nucleobase.
    Uchida Y; Taniguchi Y; Aoki E; Togo M; Sasaki S
    Nucleic Acids Symp Ser (Oxf); 2008; (52):137-8. PubMed ID: 18776291
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Selective formation of non-natural type triplexes containing TA interrupting sites with the TFO incorporating W-shape nucleic acid (WNA) analogs.
    Taniguchi Y; Takahashi R; Kodama K; Senko Y; Maeda M; Sasaki S
    Nucleic Acids Res Suppl; 2002; (2):35-6. PubMed ID: 12903092
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effective strand invasion ODN incorporating a new bicyclic nucleoside analogue (WNA).
    Aoki E; Taniguchi Y; Sasaki S
    Nucleic Acids Symp Ser (Oxf); 2007; (51):255-6. PubMed ID: 18029683
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of the modified aromatic ring of WNA on stability of triplex DNA.
    Aoki E; Taniguchi Y; Togo M; Sasaki S
    Nucleic Acids Symp Ser (Oxf); 2006; (50):185-6. PubMed ID: 17150879
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An efficient antigene activity and antiproliferative effect by targeting the Bcl-2 or survivin gene with triplex forming oligonucleotides containing a W-shaped nucleoside analogue (WNA-βT).
    Taniguchi Y; Sasaki S
    Org Biomol Chem; 2012 Oct; 10(41):8336-41. PubMed ID: 22987068
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An isocytidine derivative with a 2-amino-6-methylpyridine unit for selective recognition of the CG interrupting site in an antiparallel triplex DNA.
    Okamura H; Taniguchi Y; Sasaki S
    Chembiochem; 2014 Nov; 15(16):2374-8. PubMed ID: 25186222
    [TBL] [Abstract][Full Text] [Related]  

  • 16. DNA triple helix formation at target sites containing several pyrimidine interruptions: stabilization by protonated cytosine or 5-(1-propargylamino)dU.
    Gowers DM; Bijapur J; Brown T; Fox KR
    Biochemistry; 1999 Oct; 38(41):13747-58. PubMed ID: 10521282
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Strong, specific, monodentate G-C base pair recognition by N7-inosine derivatives in the pyrimidine.purine-pyrimidine triple-helical binding motif.
    Marfurt J; Parel SP; Leumann CJ
    Nucleic Acids Res; 1997 May; 25(10):1875-82. PubMed ID: 9115352
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recognition of CG inversions in DNA triple helices by methylated 3H-pyrrolo[2,3-d]pyrimidin-2(7H)-one nucleoside analogues.
    Ranasinghe RT; Rusling DA; Powers VE; Fox KR; Brown T
    Chem Commun (Camb); 2005 May; (20):2555-7. PubMed ID: 15900324
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evidence for a DNA triplex in a recombination-like motif: I. Recognition of Watson-Crick base pairs by natural bases in a high-stability triplex.
    Walter A; Schütz H; Simon H; Birch-Hirschfeld E
    J Mol Recognit; 2001; 14(2):122-39. PubMed ID: 11301482
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Development of Non-natural Type Nucleoside to Stabilize Triplex DNA Formation against CG and TA Inversion Site.
    Wang L; Ling Y; Tian Y; Wang X; Sasaki S; Taniguchi Y
    Curr Med Chem; 2024; 31(19):2663-2686. PubMed ID: 37183460
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.